Synlett 2018; 29(09): 1191-1194
DOI: 10.1055/s-0037-1609336
letter
© Georg Thieme Verlag Stuttgart · New York

Zirconocene-Initiated Intramolecular Hydride Transfer in N-Iso­alkyl-Substituted Propargylamines

Ilfir R. Ramazanov*
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: ilfir.ramazanov@gmail.com
,
Rita N. Kadikova
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: ilfir.ramazanov@gmail.com
,
Zukhra R. Saitova
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: ilfir.ramazanov@gmail.com
,
Usein M. Dzhemilev
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russian Federation   Email: ilfir.ramazanov@gmail.com
› Author Affiliations
This work was supported by the Russian Foundation for Basic Research (Grant No. 18-03-00817 and 16-33-60167) and by Grant of the RF President (Sci. Sh.–6651.2016.3).
Further Information

Publication History

Received: 23 January 2018

Accepted after revision: 10 February 2018

Publication Date:
08 March 2018 (online)


Abstract

The unusual transformation of N-isoalkyl-substituted propargylamines into alkenylamines under the action of Cp2ZrCl2 and organoaluminum compounds (Me3Al, EtAlCl2) has been observed. The proposed mechanism, involving the N-isoalkyl-substituted propargylamine undergoing zirconocene-initiated intramolecular hydride transfer was supported by B3LYP/6-31G(d)/LanL2DZ calculations.

Supporting Information

 
  • References and Notes

  • 1 Negishi E.-i. ARKIVOC 2011; (viii): 34
  • 2 Dzhemilev UM. D’yakonov VA. Modern Organoaluminum Reagents, in Topics in Organometallic Chemistry . Vol. 41; Woodward S. Dagorne S. Springer; Berlin, Heidelberg: 2013: 215
  • 3 Negishi E. Bull. Chem. Soc. Jpn. 2007; 80: 233
  • 4 Ramazanov IR. Kadikova RN. Dzhemilev UM. Russ. Chem. Bull. 2011; 60: 99
  • 5 Wang G. Zhu G. Negishi E.-i. J. Organomet. Chem. 2007; 692: 4731
  • 6 Rand CL. Van Horn DE. Moore MW. Negishi E. J. Org. Chem. 1981; 46: 4093
  • 7 Khanna A. Maung C. Johnson KR. Luong TT. Van Vranken DL. Org. Lett. 2012; 14: 3233
  • 8 Giannini U. Brückner G. Pellino E. Cassata A. J. Polym. Sci., Part C 1968; 22: 157
  • 9 Giannini U. Brückner G. Pellino E. Cassata A. J. Polym. Sci., Part B : Polym. Lett. 1967; 5: 527
  • 10 Chung TC. In Functionalization of Polyolefins . Academic Press; San Diego: 2002: 39
  • 11 Bochmann M. J. Chem. Soc., Dalton Trans. 1996; 255
  • 12 Yoshida T. Negishi E. J. Am. Chem. Soc. 1981; 103: 4985
  • 13 Wipf P. Lim S. Angew. Chem., Int. Ed. Engl. 1993; 32: 1068
  • 14 Negishi E. Van Horn DE. Yoshida T. J. Am. Chem. Soc. 1985; 107: 6639
  • 15 (E)-2-d-N-Isopropyloct-2-en-1-amine (1a)To a 25 mL, argon-swept flask, equipped with a magnetic stirrer and rubber septum, was added Cp2ZrCl2 (585 mg, 2 mmol) suspended in CH2Cl2 (5 mL) and Me3Al (0.38 mL, 4 mmol; caution: organoaluminums are pyrophoric and can ignite on contact with air, water or any oxidizer!) at room temperature. To the solution was added N,N-diisopropyloct-2-yn-1-amine (418 mg, 2 mmol) at room temperature and stirred for 3 h at 40 °C. Then, the reaction mixture was diluted with with hexane (5 mL), and D2O (3 mL) was added dropwise while cooling the reactor flask in an ice bath. The precipitate was filtered on a filter paper. The aqueous layer was extracted with diethyl ether (3 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous CaCl2. Evaporation of solvent and purification of the residue by column chromatography (hexane/ethyl acetate, 5:1) gave a colourless oil; yield 279 mg (82%); Rf = 0.8 (hexane/ethyl acetate, 5:1). 1H NMR (400 MHz, CDCl3): δ = 0.85 (t, J = 6.9 Hz, 3 Н, С(11)Н3), 1.02 (d, J = 6.3 Hz, 6 Н, С(5,6)Н3), 1.17–1.30 (m, 4 Н, С(9,10)Н2), 1.30–1.37 (m, 2 Н, С(8)Н2), 1.98 (q, J = 7.1 Hz, 2 Н, С(7)Н2), 2.74–2.83 (m, 1 Н, С(4)Н1), 3.14 (s, 2 Н, С(1)Н2), 5.45–5.60 (m, 1 Н, С(3)Н1). 13C NMR (100 MHz, CDCl3): δ = 13.97 (C(11)), 22.47 and 31.35 (C(9) and C(10)), 22.88 (2 C, С(5,6)), 28.93 (C(8)), 32.25 (С(7)), 47.99 (С(4)), 49.30 (C(1)), 128.08 (t, 1 J CD =18.5 Hz, C(2)), 132.34 (С(3)). MS (EI): m/z (%) = 170 (4) [М]+, 155 (22), 141 (<1), 127 (2), 111 (8), 99 (12), 82 (7), 69 (31), 44 (100), 41 (21). Anal. Calcd (%) for C11H22DN: C, 77.57; N, 8.22. Found: C, 77.7; N, 8.3.
  • 16 Papirer E. In Surfactant Science Series . Vol. 90. Marcel Dekker; New York: 2000: 690
  • 17 Meerwein H. Allendörfer H. Beekmann P. Kunert F. Morschel H. Pawellek F. Wunderlich K. Angew. Chem. 1958; 70: 211
  • 18 Kaitmazova GS. Gambaryan NP. Rokhlin EM. Russ. Chem. Rev. 1989; 58: 1145