Facial Plast Surg 2017; 33(04): 388-395
DOI: 10.1055/s-0037-1603789
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Numerical Analysis of Nasal Breathing: A Pilot Study

Jan Joris Brüning
1   Charité-Universitätsmedizin Berlin, Labor für Biofluidmechanik, Berlin, Germany
,
Leonid Goubergrits
1   Charité-Universitätsmedizin Berlin, Labor für Biofluidmechanik, Berlin, Germany
,
Werner Heppt
2   Department of Otorhinolaryngology, Head and Neck Surgery, Städtisches Klinikum Karlsruhe GmbH, Karlsruhe, Baden-Württemberg, Germany
,
Stefan Zachow
3   Department of Visual Data Analysis, Zuse Institute Berlin, Berlin, Germany
,
Thomas Hildebrandt
4   Department of Otorhinolaryngology, Limmatklinik, Zürich, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
28 July 2017 (online)

Abstract

Currently, there is no fully sufficient way to differentiate between symptomatic and normal nasal breathing. Using the nose's total resistance is disputed as a valid means to objectify nasal airflow, and the need for a more comprehensive diagnostic method is increasing. This work's aim was to test a novel approach considering intranasal wall shear stress (WSS) as well as static pressure maps obtained by computational fluid dynamics (CFD). X-ray computed tomography (CT) scan data of six symptom-free subjects and seven symptomatic patients were used. Patient-specific geometries of the nasal cavity were segmented from these datasets. Inspiratory and expiratory steady airflow simulations were performed using CFD. Calculated static pressures and WSSs were mapped onto a common template of the nasal septum, allowing for comparison of these parameters between the two patient groups. Significant differences in WSS distributions during the inspiratory phase could be identified between the two groups, whereas no differences were found for the expiratory phase. It is assumed that one essential feature of normal nasal breathing probably consists of distinctively different intranasal flow fields for inspiration and expiration. This is in accordance with previous investigations. The proposed method seems to be a promising tool for developing a new kind of patient-specific assessment of nasal breathing. However, more studies and a greater case number of data with an expanded focus would be ideal.

 
  • References

  • 1 Hildebrandt T, Heppt WJ, Kertzscher U, Goubergrits L. The concept of rhinorespiratory homeostasis--a new approach to nasal breathing. Facial Plast Surg 2013; 29 (02) 85-92
  • 2 Herberhold C. Comment to Fischer R. Physikalische Modelle zur Nachbildung der physiologischen Funktion der Nase bei der Klimatisierung der Inspirationsluft. Archiv klin exp. Ohren-, Nasen- und Kehlkopfheilk 1972; 202 (02) 380-385
  • 3 Jessen M, Janzon L. Prevalence of non-allergic nasal complaints in an urban and a rural population in Sweden. Allergy 1989; 44 (08) 582-587
  • 4 Stewart M, Ferguson B, Fromer L. Epidemiology and burden of nasal congestion. Int J Gen Med 2010; 3: 37-45
  • 5 Vogt K, Wernecke KD, Behrbohm H, Gubisch W, Argale M. Four-phase rhinomanometry: a multicentric retrospective analysis of 36,563 clinical measurements. Eur Arch Otorhinolaryngol 2016; 273 (05) 1185-1198
  • 6 Mlynski G, Löw J. Rhinoresistometry--a further development of rhinomanometry [in German]. Laryngorhinootologie 1993; 72 (12) 608-610
  • 7 Mlynski G, Beule A. Diagnostic methods of nasal respiratory function [in German]. HNO 2008; 56 (01) 81-99
  • 8 Houser SM. Surgical treatment for empty nose syndrome. Arch Otolaryngol Head Neck Surg 2007; 133 (09) 858-863
  • 9 Doorly DJ, Franke V, Gambaruto A, Taylor DJ, Schroter RC. Nasal airflow: computational and experimental modeling. Presented at: the 5th World Congress of Biomechanics; July 29, 2006; Munich
  • 10 Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 2008; 163 (1-3): 100-110
  • 11 Hildebrandt T. Das Konzept der Rhinorespiratorischen Homöostase—ein neuer theoretischer Ansatz für die Diskussion physiologischer und physikalischer Zusammenhänge bei der Nasenatmung [dissertation]. Freiburg im Breisgau, Germany: Albert-Ludwigs-Universität; 2011
  • 12 Hildebrandt T, Heppt WJ, Kertzscher U, Goubergrits L. The concept of rhinorespiratory homeostasis--a new approach to nasal breathing. Facial Plast Surg 2013; 29 (02) 85-92
  • 13 Inthavong K, Shang Y, Tu J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir Physiol Neurobiol 2014; 190: 54-61
  • 14 Na Y, Chung KS, Chung SK, Kim SK. Effects of single-sided inferior turbinectomy on nasal function and airflow characteristics. Respir Physiol Neurobiol 2012; 180 (2-3): 289-297
  • 15 Xi J, Si X, Kim J, Su G, Dong H. Modeling the pharyngeal anatomical effects on breathing resistance and aerodynamically generated sound. Med Biol Eng Comput 2014; 52 (07) 567-577
  • 16 Xiong G, Zhan J, Zuo K, Li J, Rong L, Xu G. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Biol Eng Comput 2008; 46 (11) 1161-1167
  • 17 Doorly DJ, Taylor DJ, Gambaruto AM, Schroeter RC, Tolley N. Nasal architecture: form and flow. Philos Transact A Math Phys Eng Sci 2008; 366 (1879): 3225-3246
  • 18 André RF, Vuyk HD, Ahmed A, Graamans K, Nolst Trenité GJ. Correlation between subjective and objective evaluation of the nasal airway. A systematic review of the highest level of evidence. Clin Otolaryngol 2009; 34 (06) 518-525
  • 19 Zhao K, Scherer PW, Hajiloo SA, Dalton P. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 2004; 29 (05) 365-379
  • 20 Goubergrits L, Schaller J, Kertzscher U. , et al. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J R Soc Interface 2012; 9 (69) 677-688
  • 21 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol (1985) 2006; 100 (03) 1003-1010
  • 22 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95 (06) 2998-3008
  • 23 Zhao K, Blacker K, Luo Y, Bryant B, Jiang J. Perceiving nasal patency through mucosal cooling rather than air temperature or nasal resistance. PLoS One 2011; 6 (10) e24618
  • 24 Zhao K, Jiang J, Blacker K. , et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
  • 25 Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol (1985) 1993; 75 (05) 2273-2287
  • 26 Hildebrandt T, Goubergrits L, Heppt WJ, Bessler S, Zachow S. Evaluation of the intranasal flow field through computational fluid dynamics. Facial Plast Surg 2013; 29 (02) 93-98
  • 27 Proctor DF. The upper airway. In: Proctor DF, Anderson IB. , eds. The Nose. Upper Airway Physiology and the Athmospheric Environment. New York, NY: Elsevier Urban & Fischer; 1982: 22-43
  • 28 Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege HC. Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph 2009; 15 (06) 1407-1414
  • 29 Quadrio M, Pipolo C, Corti S. , et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med Biol Eng Comput 2016; 54 (2-3): 411-419
  • 30 Sethian JA. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. 2nd ed. Cambridge, United Kingdom: Cambridge University Press; 1999
  • 31 Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng 2000; 2: 315-337
  • 32 Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 1987; 21: 163-169
  • 33 Kimbell JS, Garcia GJM, Frank DO, Cannon DE, Pawar SS, Rhee JS. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report. Am J Rhinol Allergy 2012; 26 (03) e94-e98
  • 34 Zhu JH, Lee HP, Lim KM, Lee SJ, San LT, Wang Y. Inspirational airflow patterns in deviated noses: a numerical study. Comput Methods Biomech Biomed Engin 2013; 16 (12) 1298-1306
  • 35 Taylor DJ, Doorly DJ, Schroter RC. Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 2010; 7 (44) 515-527
  • 36 Scherer PW, Hahn II, Mozell MM. The biophysics of nasal airflow. Otolaryngol Clin North Am 1989; 22 (02) 265-278
  • 37 Bermüller C, Kirsche H, Rettinger G, Riechelmann H. Diagnostic accuracy of peak nasal inspiratory flow and rhinomanometry in functional rhinosurgery. Laryngoscope 2008; 118 (04) 605-610
  • 38 Heimann T, Meinzer HP. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 2009; 13 (04) 543-563