J Knee Surg 2018; 31(01): 068-074
DOI: 10.1055/s-0037-1600089
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA

Function of the Anterior Intermeniscal Ligament

Trent M. Guess
1   Department of Physical Therapy, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Swithin S. Razu
3   Department of Bioengineering, University of Missouri, Columbia, Missouri
,
Keiichi Kuroki
4   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
,
James L. Cook
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
4   Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

04 November 2016

06 February 2017

Publication Date:
29 March 2017 (online)

Abstract

The function and importance of the anterior intermeniscal ligament (AIML) of the knee are not fully known. The purpose of this study was to evaluate the biomechanical and sensorimotor function of the AIML. Computational analysis was used to assess AIML and tibiomeniscofemoral biomechanics under combined translational and rotational loading applied during dynamic knee flexion–extension. Histologic and immunohistochemical examination was used to identify and characterize neural elements in the tissue. The computational models were created from anatomy and passive motion of two female subjects and histologic examinations were conducted on AIMLs retrieved from 10 fresh-frozen cadaveric knees. It was found that AIML strain increased with compressive knee loading and that external rotation of the tibia unloads the AIML, suppressing the relationship between AIML strain and compressive knee loads. Extensive neural elements were located throughout the AIML tissue and these elements were distributed across the three AIML anatomical types. The AIMLs have a beneficial influence on knee biomechanics with decreased meniscal load sharing with AIML loss. The AIML plays a significant biomechanical and neurologic role in the sensorimotor functions of the knee. The major role for the AIML may primarily involve its neurologic function.

 
  • References

  • 1 Nelson EW, LaPrade RF. The anterior intermeniscal ligament of the knee. An anatomic study. Am J Sports Med 2000; 28 (01) 74-76
  • 2 Paci JM, Scuderi MG, Werner FW, Sutton LG, Rosenbaum PF, Cannizzaro JP. Knee medial compartment contact pressure increases with release of the type I anterior intermeniscal ligament. Am J Sports Med 2009; 37 (07) 1412-1416
  • 3 Poh SY, Yew KS, Wong PL. , et al. Role of the anterior intermeniscal ligament in tibiofemoral contact mechanics during axial joint loading. Knee 2012; 19 (02) 135-139
  • 4 Markolf KL, Jackson SR, McAllister DR. Force measurements in the medial meniscus posterior horn attachment: effects of anterior cruciate ligament removal. Am J Sports Med 2012; 40 (02) 332-338
  • 5 Yildirim FB, Soyuncu Y, Oguz N, Aydin AT, Sindel M, Ustunel I. Anterior intermeniscal ligament: an ultrastructural study. Ann Anat 2007; 189 (05) 510-514
  • 6 Guess TM, Razu S, Jahandar H. Evaluation of knee ligament mechanics using computational models. J Knee Surg 2016; 29 (02) 126-137
  • 7 Blankevoort L, Huiskes R. Ligament-bone interaction in a three-dimensional model of the knee. J Biomech Eng 1991; 113 (03) 263-269
  • 8 Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Ménétrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 2006; 14 (03) 204-213
  • 9 Osti M, Tschann P, Künzel KH, Benedetto KP. Anatomic characteristics and radiographic references of the anterolateral and posteromedial bundles of the posterior cruciate ligament. Am J Sports Med 2012; 40 (07) 1558-1563
  • 10 Park SE, DeFrate LE, Suggs JF, Gill TJ, Rubash HE, Li G. The change in length of the medial and lateral collateral ligaments during in vivo knee flexion. Knee 2005; 12 (05) 377-382
  • 11 Hartshorn T, Otarodifard K, White EA, Hatch III GF. Radiographic landmarks for locating the femoral origin of the superficial medial collateral ligament. Am J Sports Med 2013; 41 (11) 2527-2532
  • 12 Liu F, Gadikota HR, Kozánek M. , et al. In vivo length patterns of the medial collateral ligament during the stance phase of gait. Knee Surg Sports Traumatol Arthrosc 2011; 19 (05) 719-727
  • 13 Liu F, Yue B, Gadikota HR. , et al. Morphology of the medial collateral ligament of the knee. J Orthop Surg 2010; 5: 69
  • 14 Guess TM, Razu S, Jahandar H, Stylianou A. Predicted loading on the menisci during gait: the effect of horn laxity. J Biomech 2015; 48 (08) 1490-1498
  • 15 LaPrade RF, Engebretsen AH, Ly TV, Johansen S, Wentorf FA, Engebretsen L. The anatomy of the medial part of the knee. J Bone Joint Surg Am 2007; 89 (09) 2000-2010
  • 16 Tibor LM, Marchant Jr MH, Taylor DC, Hardaker Jr WT, Garrett Jr WE, Sekiya JK. Management of medial-sided knee injuries, part 2: posteromedial corner. Am J Sports Med 2011; 39 (06) 1332-1340
  • 17 Wijdicks CA, Ewart DT, Nuckley DJ, Johansen S, Engebretsen L, Laprade RF. Structural properties of the primary medial knee ligaments. Am J Sports Med 2010; 38 (08) 1638-1646
  • 18 Claes S, Vereecke E, Maes M, Victor J, Verdonk P, Bellemans J. Anatomy of the anterolateral ligament of the knee. J Anat 2013; 223 (04) 321-328
  • 19 Kennedy MI, Claes S, Fuso FA. , et al. The anterolateral ligament: an anatomic, radiographic, and biomechanical analysis. Am J Sports Med 2015; 43 (07) 1606-1615
  • 20 Guess TM, Thiagarajan G, Kia M, Mishra M. A subject specific multibody model of the knee with menisci. Med Eng Phys 2010; 32 (05) 505-515
  • 21 Wilmes P, Anagnostakos K, Weth C, Kohn D, Seil R. The reproducibility of radiographic measurement of medial meniscus horn position. Arthroscopy 2008; 24 (06) 660-668
  • 22 Wilmes P, Pape D, Kohn D, Seil R. The reproducibility of radiographic measurement of lateral meniscus horn position. Arthroscopy 2007; 23 (10) 1079-1086
  • 23 Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 1995; 11 (01) 96-103
  • 24 Hauch KN, Villegas DF, Haut Donahue TL. Geometry, time-dependent and failure properties of human meniscal attachments. J Biomech 2010; 43 (03) 463-468
  • 25 Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105 (02) 136-144
  • 26 Biedert RM, Stauffer E, Friederich NF. Occurrence of free nerve endings in the soft tissue of the knee joint. A histologic investigation. Am J Sports Med 1992; 20 (04) 430-433