Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(13): 2533-2545
DOI: 10.1055/s-0036-1592007
DOI: 10.1055/s-0036-1592007
paper
Dimethylprolinol Versus Diphenylprolinol in CuBr2-Catalyzed Enantioselective Allenylation of Terminal Alkynols
National Natural Science Foundation of China (21572202).Further Information
Publication History
Received: 24 March 2018
Accepted after revision: 30 March 2018
Publication Date:
08 May 2018 (online)

Abstract
The CuBr2-catalyzed enantioselective allenylation of terminal alkynols with carbon chains of different lengths has been developed. Compared with (S)-α,α-diphenylprolinol, the reaction using (S)-α,α-dimethylprolinol as the chiral amine afforded optically active 1,3-disubstuted allenols with higher ee-values. Both aliphatic and aromatic aldehydes could be applied. The naturally occurring phlomic acid was synthesized in four steps from commercially available hex-5-yn-1-ol.
Key words
CuBr2 - enantioselective allenylation - terminal alkynols - (S)-α,α-diphenylprolinol - (S)-α,α-dimethylprolinol - phlomic acidSupporting Information
- Please see the copies of 1H NMR, 13C NMR, and HPLC spectra in Supporting Information.Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1592007.
- Supporting Information
-
References
- 1a Chu W. Zhang Y. Wang J. Catal. Sci. Technol. 2017; 7: 4570
- 1b Ye J. Ma S. Org. Chem. Front. 2014; 1: 1210
- 1c Neff RK. Frantz DE. ACS Catal. 2014; 4: 519
- 1d Yu S. Ma S. Chem. Commun. 2011; 47: 5384
- 1e Ogasawara M. Tetrahedron: Asymmetry 2009; 20: 259
- 1f Brummond KM. De Forrest JE. Synthesis 2007; 795
- 1g Krause N. Hoffmann-Röder A. Tetrahedron 2004; 60: 11671
- 1h Sydnes LK. Chem. Rev. 2003; 103: 1133
- 2a Cambie RC. Hirschberg A. Jones ER. H. Lowe G. J. Chem. Soc. C 1963; 4120
- 2b Bew RE. Chapman JR. Jones ER. H. Lowe BE. Lowe G. J. Chem. Soc. C 1966; 129
- 2c de Graaf W. Smits A. Boersma J. van Koten G. Tetrahedron 1988; 44: 6699
- 2d Daviesa DG. Hodge P. Org. Biomol. Chem. 2005; 3: 1690
- 2e Zhang Y. Wu Y. Org. Biomol. Chem. 2010; 8: 4744
- 3a Megati S. Goren Z. Silverton JV. Orlina J. Nishimura H. Shirasaki T. Mitsuya H. Zemlicka J. J. Med. Chem. 1992; 35: 4098
- 3b Egron D. Périgaud C. Gosselin G. Aubertin A. Gatanaga H. Mitsuya H. Zemlicka J. Imbacha J. Bioorg. Med. Chem. Lett. 2002; 12: 265
- 4a Jones BC. N. M. Silverton JV. Simons C. Megati S. Nishimura H. Maeda Y. Mitsuya H. Zemlicka J. J. Med. Chem. 1995; 38: 1397
- 4b Zhu Y. Pai SB. Liu S. Grove KL. Jones BC. N. M. Simons C. Zemlicka J. Cheng Y. Antimicrob. Agents Chemother. 1997; 41: 1755
- 5a Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
- 5b Bagby MO. Smith CR. Jr. Wolff IA. J. Org. Chem. 1965; 30: 4227
- 5c Landor SR. Punja N. Tetrahedron Lett. 1966; 40: 4905
- 5d Mikalaijczak KL. Rogers MF. Smith JunC. R. Wolff IA. Biochem. J. 1967; 105: 1245
- 5e Cowie JS. Landor PD. Landor SR. Punja N. J. Chem. Soc., Perkin Trans. 1 1972; 2197
- 5f Horler DF. J. Chem. Soc. C 1970; 859
- 5g Kato T. Ishigami K. Akasaka K. Watanabe H. Tetrahedron 2009; 65: 6953
- 5h Ishigami K. Kato T. Akasaka K. Watanabe H. Tetrahedron Lett. 2008; 49: 5077
- 5i Yu Q. Ma S. Eur. J. Org. Chem. 2015; 1596
- 6a Bras JL. Muzart J. Chem. Soc. Rev. 2014; 43: 3003
- 6b Muñoz MP. Chem. Soc. Rev. 2014; 43: 3164
- 6c Adams CS. Weatherly CD. Burke EG. Schomaker JM. Chem. Soc. Rev. 2014; 43: 3136
- 7a Neff RK. Frantz DE. Tetrahedron 2015; 71: 7
- 7b Ye J. Ma S. Acc. Chem. Res. 2014; 47: 989
- 7c Brooner RE. M. T. Brown J. Chee MA. Widenhoefer RA. Organometallics 2016; 35: 2014
- 7d Qiu Y. Zhou J. Li J. Fu C. Guo Y. Wang H. Ma S. Chem. Eur. J. 2015; 21: 15939
- 7e Burrows LC. Jesikiewicz LT. Lu G. Geib SJ. Liu P. Brummond KM. J. Am. Chem. Soc. 2017; 139: 15022
- 8a Wang Y. Zhang W. Ma S. J. Am. Chem. Soc. 2013; 135: 11517
- 8b Chu W.-D. Zhang L. Zhang Z. Zhou Q. Mo F. Zhang Y. Wang J. J. Am. Chem. Soc. 2016; 138: 14558
- 8c Yao Q. Liao Y. Lin L. Lin X. Ji J. Liu X. Feng X. Angew. Chem. Int. Ed. 2016; 55: 1859
- 8d Liu Y. Liu X. Hu H. Guo J. Xia Y. Lin L. Feng X. Angew. Chem. Int. Ed. 2016; 55: 4054
- 8e Dai J. Duan X. Zhou J. Fu C. Ma S. Chin. J. Chem. 2018; 36: 387
- 8f Jiang Y. Diagne AB. Thomson RJ. Schaus SE. J. Am. Chem. Soc. 2017; 139: 1998
- 8g Qian D. Wu L. Lin Z. Sun J. Nat. Commun. 2017; 8: 567
- 8h Poh J.-S. Makai S. von Keutz T. Tran DN. Battilocchio C. Pasau P. Ley SV. Angew. Chem. Int. Ed. 2017; 56: 1864
- 9a Huang X. Cao T. Han Y. Jiang X. Lin W. Zhang J. Ma S. Chem. Commun. 2015; 51: 6956
- 9b Huang X. Xue C. Fu C. Ma S. Org. Chem. Front. 2015; 2: 1040
- 9c Tang X. Huang X. Cao T. Han Y. Jiang X. Lin W. Tang Y. Zhang J. Yu Q. Fu C. Ma S. Org. Chem. Front. 2015; 2: 688
- 10 Jiang X. Zhang J. Ma S. J. Am. Chem. Soc. 2016; 138: 8344
- 11a Wang D. Gautam LN. S. Bollinger C. Harris A. Li M. Shi X. Org. Lett. 2011; 13: 2618
- 11b Stoll AH. Blakey SB. J. Am. Chem. Soc. 2010; 132: 2108
- 11c Evans RJ. D. Landor SR. Regan JP. J. Chem. Soc. Perkin Trans. 1 1974; 552
- 11d Gorins G. Kuhnert L. Johnson CR. Marnett LJ. J. Med. Chem. 1996; 39: 4871
- 11e Carreira EM. Hastings CA. Shepard MS. Yerkey LA. Millward DB. J. Am. Chem. Soc. 1994; 116: 6622
- 11f Shepard MS. Carreira EM. J. Am. Chem. Soc. 1997; 119: 2597
- 12 Beveridge RE. Batey RA. Org. Lett. 2013; 15: 3086
- 13 Ma S. Liu J. Li S. Chen B. Cheng J. Kuang J. Liu Y. Wan B. Wang Y. Ye J. Yu Q. Yuan W. Yu S. Adv. Synth Catal. 2011; 353: 1005
- 14 Morita N. Krause N. Eur. J. Org. Chem. 2006; 4634
- 15 Aitzetmüller K. Tsevegsüren N. Vosmann K. Fett/Lipid 1997; 99: 74
- 16 Mukai C. Nomura I. Kitagaki S. J. Org. Chem. 2003; 68: 1376
For selected reviews on the synthesis of optically active allenes, see:
For selected recent reviews, see:
For selected recent reviews, see:
For selected reports published after 2014, see:
For selected recent reports on the synthesis of functionalized optically active allenes, see:
For selected examples, see: