Synthesis 2018; 50(13): 2523-2532
DOI: 10.1055/s-0036-1591995
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Cyclopentene-Fused Tetrahydroquinolines via N-Heterocyclic Carbene Catalyzed Domino Reactions

Long Zhao
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Sun Li
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Lei Wang
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Shun Yu
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Gerhard Raabe
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 23 March 2018

Accepted: 28 March 2018

Publication Date:
03 May 2018 (online)


Abstract

A new strategy for the N-heterocyclic carbene catalyzed asymmetric synthesis of cyclopentene-fused tetrahydroquinoline derivatives has been developed. The one-pot organocatalytic domino protocol allows a direct entry to the characteristic cyclopenta[c]tetrahydroquinoline core of many alkaloids and some potential drugs employing readily available quinolinone and enal substrates in good domino yields and stereoselectivities.

Supporting Information

 
  • References


    • For selected reviews, see:
    • 1a Enders D. Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 1b Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506
    • 1c Enders D. Niemeier O. Henseler A. Chem. Rev. 2007; 107: 5606
    • 1d Moore JL. Rovis T. Top. Curr. Chem. 2010; 291: 77
    • 1e Nair V. Menon RS. Biju AT. Sinu CR. Paul RR. Jose A. Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 1f Douglas J. Churchill G. Smith AD. Synthesis 2012; 44: 2295
    • 1g Bugaut X. Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 1h Grossmann A. Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 1i Izquierdo J. Hutson GE. Cohen DT. Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 1j De Sarkar S. Biswas A. Samanta RC. Studer A. Chem. Eur. J. 2013; 19: 4664
    • 1k Ryan SJ. Candish L. Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 1l Mahatthananchai J. Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 1m Hopkinson MN. Richter C. Schedler M. Glorius F. Nature 2014; 510: 485
    • 1n Flanigan DM. Romanov-Michailidid F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 1o Menon RS. Biju AT. Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 1p Yetra SR. Patra A. Biju AT. Synthesis 2015; 47: 1357
    • 1q Reyes E. Uria U. Carrillo L. Vicario JL. Synthesis 2017; 49: 451

    • For selected papers, see:
    • 1r Huang X.-L. He L. Shao P.-L. Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
    • 1s Hao L. Du Y. Lv H. Chen X. Jiang H. Shao Y. Chi YR. Org. Lett. 2012; 14: 2154
    • 1t Chen XY. Sun L.-H. Ye S. Chem. Eur. J. 2013; 19: 4441
    • 1u Lee A. Scheidt KA. Chem. Commun. 2015; 51: 3407
    • 1v Chen X.-Y. Liu Q. Chauhan P. Li S. Peuronen A. Rissanen K. Jafari E. Enders D. Angew. Chem. Int. Ed. 2017; 56: 6241
    • 2a Burstein C. Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
    • 2b Sohn SS. Rosen EL. Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
    • 3a Nair V. Vellalath S. Poonoth M. Mohan R. Suresh E. Org. Lett. 2006; 8: 507
    • 3b Nair V. Poonoth M. Vellalath S. Suresh E. Thirumalai R. J. Org. Chem. 2006; 71: 8964
    • 3c Li Y. Zhao Z.-A. He H. You S.-L. Adv. Synth. Catal. 2008; 350: 1885
    • 3d Sun L.-H. Shen L.-T. Ye S. Chem. Commun. 2011; 47: 10136
    • 3e Cohen DT. Scheidt KA. Chem. Sci. 2012; 3: 53
    • 3f Dugal-Tessier J. O’Bryan EA. Schroeder TB. H. Cohen DT. Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
    • 3g Nawaz F. Zaghouani M. Bonne D. Chuzel O. Rodriguez J. Coquerel Y. Eur. J. Org. Chem. 2013; 8253
    • 3h Lv H. Jia W.-Q. Sun L.-H. Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 3i Jang K.-P. Hutson GE. Johnston RC. McCusker EO. Cheong PH.-Y. Scheidt KA. J. Am. Chem. Soc. 2014; 136: 76
    • 3j Guo C. Sahoo B. Daniliuc CG. Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
    • 3k Guo C. Fleige M. Janssen-Müller D. Daniliuc CG. Glorius F. Nature Chem. 2015; 7: 842
    • 3l Wang L. Li S. Blümel M. Philipps AR. Wang A. Peuronen A. Rissanen K. Raabe G. Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
    • 3m Guo C. Fleige M. Janssen-Müller D. Daniliuc CG. Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
  • 4 Nair V. Vellalath S. Poonoth M. Sureth E. J. Am. Chem. Soc. 2006; 128: 8736
  • 5 Chiang PC. Kaeobamrung J. Bode JW. J. Am. Chem. Soc. 2007; 129: 3520
  • 6 Cardinal-David B. Raup DE. A. Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
  • 7 Bera S. Samanta RC. Daniliuc CG. Studer A. Angew. Chem. Int. Ed. 2014; 53: 9622
  • 8 Mondal S. Yetra SR. Patra A. Kunte SS. Gonnade RG. Biju AT. Chem. Commun. 2014; 50: 14539
  • 9 Zhang Z.-F. Chen K.-Q. Zhang C.-L. Ye S. Chem. Commun. 2017; 53: 4327
    • 10a Guo C. Schedler M. Daniliuc CG. Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
    • 10b Wang L. Li S. Chauhan P. Hack D. Philipps AR. Peuronen A. Rissanen K. Raabe G. Enders D. Chem. Eur. J. 2016; 22: 5123
  • 11 For a recent organocatalytic synthesis of fully substituted cyclopentanes, see: Zou L.-H. Philipps AR. Raabe G. Enders D. Chem. Eur. J. 2015; 21: 1004
    • 12a Rosenzweig-Lipson S. Dunlop J. Marquis KL. Drug News Perspect. 2005; 9: 565
    • 12b Dunlop J. Watts SW. Barrett JE. Coupet J. Harrison B. Mazandarani H. Nawoschik S. Pangalos MN. Ramamoorthy S. Schechter L. Smith D. Stack G. Zhang J. Zhang G. Rosenzweig-Lipson S. J. Pharm. Exp. Tech. 2011; 337: 673
    • 12c Dragan V. McWilliams JC. Miller R. Sutherland K. Dillon JL. O’Brien MA. Org. Lett. 2013; 15: 2942
    • 12d Liu Y.-P. Li Y. Cai X.-H. Li X.-Y. Kong L.-M. Cheng G.-G. Luo X.-D. J. Nat. Prod. 2012; 75: 220
    • 12e Palmisano G. Danieli B. Lesma G. Mauro M. J. Chem. Soc., Chem. Commun. 1986; 1564
  • 13 CCDC 1587958 contains the supplementary crystallographic data of 4i. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Kerr MS. Read de Alaniz J. Rovis T. J. Org. Chem. 2005; 70: 5725
    • 15a Schmidt RG. Bayburt EK. Latshow SP. Koenig JR. Daanen JF. McDonald HA. Bianchi BR. Zhong CM. Joshi S. Honore P. Marsh KC. Lee CH. Faltynek CR. Gomtsyan A. Bioorg. Med. Chem. Lett. 2011; 21: 1338
    • 15b Harland AA. Yeomans L. Grigge NW. Anand JP. Pogozheva ID. Jutkiewicz EM. Traynor JR. Mosberg HI. J. Med. Chem. 2015; 58: 8952
    • 15c Levai A. Simon A. Jenei A. Kalman G. Jeko J. Toth G. ARKIVOC 2009; (xii): 161