Synlett 2018; 29(09): 1239-1243
DOI: 10.1055/s-0036-1591950
letter
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis for HBED-CC-tris(tert-butyl ester)

Ata Makarem*
German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 280, 69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
,
Moritz Konrad
German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 280, 69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
,
Christos Liolios
German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 280, 69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
,
Klaus Kopka
German Cancer Research Center (DKFZ) Heidelberg, Division of Radiopharmaceutical Chemistry, INF 280, 69120 Heidelberg, Germany   Email: a.makarem@dkfz.de
› Author Affiliations
This work was partly funded by a grant of the German Cancer Aid (Deutsche Krebshilfe), project number 70112043.
Further Information

Publication History

Received: 28 January 2017

Accepted after revision: 11 February 2018

Publication Date:
07 March 2018 (online)

 


Abstract

HBED-CC is a bifunctional complexing agent that, at ambient temperature, tightly chelates the trivalent radiometal 68Ga (T1/2 = 68 min). This complexing agent has attracted a lot of interest in tumor imaging applications. Depending on the chemical structure, different HBED-CC variants may be employed as radiolabeling precursor for the synthesis of desired radiopharmaceuticals. In this context, HBED-CC-tris(tert-butyl ester) is the only known monovalent variant of HBED-CC which is used for the synthesis of non-symmetric HBED-CC-based radiopharmaceuticals. Commercial HBED-CC-tris(tert-butyl ester) is very ­expensive, with limited availability. Nevertheless, no synthetic procedure for this useful product has been reported to date. This work introduces a convenient and comparatively cost-efficient method for the preparation of HBED-CC-tris(tert-butyl ester).


#

Radiopharmaceuticals are essential for cancer diagnosis as well as therapy in nuclear medicine.[1] [2] [3] To date, a variety of radiopharmaceuticals with different structures and functional groups have been introduced.[4,5] Among them, radiometal-based radiopharmaceuticals bearing the complexing agent N,N′-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N′-diacetic acid (HBED-CC) have been drawing the attention of many research groups over the past decade.[6] [7] [8] [9] [10] [11] [12] [13] HBED-CC is a bifunctional hexadentate ligand with an N2O4 donor set that forms strong complexes with gallium, in particular in this context, its radioactive isotopes, such as the positron emitter gallium-68.[14] Therefore, 68Ga-labelled HBED-CC-based radiopharmaceuticals have become popular in recent years for noninvasive imaging by means of positron-emission-tomography/computer tomography (PET/CT) due to their particular nuclear physical and at the same time pharmacokinetic characteristics for highly sensitive and specific diagnosis of cancer (i.e., 68Ga[Ga]DKFZ-11, prostate cancer diagnosis) and other diseases. Hence, syntheses of HBED-CC variants and their corresponding radiometal-based radiopharmaceuticals have been developed in recent years.[15] [16] [17] [18] [19] [20] In this context, HBED-CC-tris(tert-butyl ester)[21] is the only known monovalent variant of HBED-CC. This compound is employed as a precursor for synthesis of HBED-CC-based radiopharmaceuticals with non-symmetric structures (Scheme [1]).[15] In general, preparation of HBED-CC-based radio­pharmaceuticals from the HBED-CC-tris(tert-butyl ester) precursor is divided into two main steps, namely bioconjugation and subsequent radiolabeling. Initially, the HBED-CC triester precursor binds a modified bioactive molecule (e.g., a peptide, inhibitor). In the next step, the tert-butyl groups have to be removed to yield the complete set of coordinating sites ready for radiolabeling with radiogallium, which results in very strong complexes.[22]

Zoom Image
Scheme 1 Preparation of monovalent radiopharmaceuticals, starting with HBED-CC-tris(tert-butyl ester)

However, commercial HBED-CC-tris(tert-butyl ester) is very expensive and has limited availability. To our knowledge, no synthetic method and characterization data for this compound have yet been reported. Therefore, there is a need to find a suitable and efficient method to prepare this very useful complexing agent. The current work presents a new and convenient synthetic procedure for HBED-CC-tris(tert-butyl ester), together with full structural characterization of this product and its intermediates (Scheme [2]).

Zoom Image
Scheme 2 Synthesis of HBED-CC-tris(tert-butyl ester)

As illustrated in Scheme [2], the synthetic pathway starts with 4-hydroxyhydrocinnamic acid as the first commercially available reactant. Esterification of the carboxylic acid group of this gives product 1.[23] This product is converted into aldehyde 2 through ortho-formylation.[24] Then, aldehyde 2 is transformed into amine 5 by reductive amination in the 2,2,2-trifluoroethanol (pK a 12.4)[25] solution. This solvent adjusts the pH to 5–6, which is ideal for reduction of the imine intermediate.[26] Use of other common protic solvents, such as methanol, for this reaction causes incomplete reaction and increases the number of by-products. Subsequently, removal of the tert-butyl dicarbonate (Boc) group provides salt 6. This salt is then used for the reductive amination of 8 to provide amine 10. Intermediate 8 is prepared from ester 7 through ortho-formylation.[24] Finally, compound 10 is alkylated, followed by hydrolysis to yield HBED-CC-tris(tert-butyl ester) as the final product (Scheme [2]).

In conclusion, we have developed a convenient and cost-efficient procedure for the synthesis of HBED-CC-tris(tert-butyl ester).[27] [28] All the commercially available chemicals used in our synthetic protocol are relatively low-priced. Furthermore, most reaction steps are short and easy to perform, and also involve simple, fast and cost-efficient purification methods.


#

Acknowledgment

The authors gratefully acknowledge Mrs. Jana Schmidt (technical assistant), together with Dr. Karel Klika and colleagues of the NMR service at the German Cancer Research Center (DKFZ) Heidelberg.

Supporting Information

  • References and Notes

  • 1 Ambrosini V. Fani M. Fanti S. Forrer F. Maecke HR. J. Nucl. Med. 2011; 52: 42
  • 2 Chen K. Conti PS. Adv. Drug Deliv ery Rev. 2010; 62: 1005
  • 3 Velikyan I. Theranostics 2012; 2: 424
  • 4 Chaturvedi S. Mishra AK. Front. Med. 2016; 3: 1
  • 5 Pimlott SL. Sutherland A. Chem. Soc. Rev. 2011; 40: 149
    • 6a Hope TA. Truillet C. Ehman EC. Afshar-Oromieh A. Aggarwal R. Ryan CJ. Carroll PR. Small EJ. Evans MJ. J. Nucl. Med. 2017; 58: 81
    • 6b Hope TA. Aggarwal R. Chee B. Tao D. Greene KL. Cooperberg MR. Feng F. Chang A. Ryan CJ. Small EJ. Carroll PR. J. Nucl. Med. 2017; 58: 1956
    • 6c Fendler WP. Eiber M. Beheshti M. Bomanji J. Ceci F. Cho S. Giesel F. Haberkorn U. Hope TA. Kopka K. Krause BJ. Mottaghy FM. Schöder H. Sunderland J. Wan S. Wester HJ. Fanti S. Herrmann K. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1014
    • 7a McCarthy M. Langton T. Kumar D. Campbell A. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1455
    • 7b Baranski AC. Schäfer M. Bauder-Wüst U. Wacker A. Schmidt J. Liolios C. Mier W. Haberkorn U. Eisenhut M. Kopka K. Eder M. Bioconjugate Chem. 2017; 28: 2485
  • 8 Pyka T. Weirich G. Einspieler I. Maurer T. Theisen J. Hatzichristodoulou G. Schwamborn K. Schwaiger M. Eiber M. J. Nucl. Med. 2016; 57: 367
  • 9 Rauscher I. Maurer T. Beer AJ. Graner F.-P. Haller B. Weirich G. Doherty A. Gschwend JE. Schwaiger M. Eiber M. J. Nucl. Med. 2016; 57: 1713
  • 10 Haberkorn U. Eder M. Kopka K. Babich JW. Eisenhut M. Clin. Cancer Res. 2016; 22: 9
  • 11 Verburg FA. Krohn T. Heinzel A. Mottaghy FM. Behrendt FF. Eur. J. Nucl. Med. Mol. Imaging 2015; 42: 1622
  • 12 Afshar-Oromieh A. Zechmann CM. Malcher A. Eder M. Eisenhut M. Linhart HG. Holland-Letz T. Hadaschik BA. Giesel FL. Debus JJ. Haberkorn U. Eur. J. Nucl. Med. Mol. Imaging 2014; 41: 11
  • 13 Eder M. Knackmuss S. Le Gall F. Reusch U. Rybin V. Little M. Haberkorn U. Mier W. Eisenhut M. Eur. J. Nucl. Med. Mol. Imaging 2010; 37: 1397
    • 14a Zöller M. Schuhmacher J. Reed J. Maier-Borst W. Matzku S. J. Nucl. Med. 1992; 33: 1366
    • 14b Schuhmacher J. Klivenyi G. Hull WE. Matys R. Hauser H. Kalthoff H. Schmiegel WH. Maier-Borst W. Matzku S. Nucl. Med. Biol. 1992; 19: 809
  • 15 Trencsényi G. Dénes N. Nagy G. Kis A. Vida A. Farkas F. Szabó JP. Kovács T. Berényi E. Garai I. Bai P. Hunyadi J. Kertész I. J. Pharm. Biomed. Anal. 2017; 139: 54
  • 16 Kung HF. Wu Z. Choi SR. Ploessl K. Zha Z. PCT Int. Appl WO 2017007790, 2017
  • 17 Zha Z. Song J. Choi SR. Wu Z. Ploessl K. Smith M. Kung H. Bioconjugate Chem. 2016; 27: 1314
  • 18 Liolios C. Schäfer M. Haberkorn U. Eder M. Kopka K. Bioconjug ate Chem. 2016; 27: 737
  • 19 Eder M. Schäfer M. Bauder-Wüst U. Hull WE. Wängler C. Mier W. Haberkorn U. Eisenhut M. Bioconjug ate Chem. 2012; 23: 688
  • 20 Eder M. Wängler B. Knackmuss S. LeGall F. Little M. Haberkorn U. Mier W. Eisenhut M. Eur. J. Nucl. Med. Mol. Imaging 2008; 35: 1878
  • 21 Commercially known as EBED-CC-tris(tBu)ester; chemical name: 3-(3-{[(2-{[5-(2-tert-butoxycarbonyl-ethyl)-2-hydroxy-benzyl]-tert-butoxycarbonylmethyl-amino}-ethyl)-tert-butoxycarbonylmethyl-amino]-methyl}-4-hydroxy-phenyl)-propionic acid.
  • 22 Motekaitis RJ. Martell AE. Welch MJ. Inorg. Chem. 1990; 29: 1463
  • 23 Rauniyar V. Hall DG. J. Org. Chem. 2009; 74: 4236
  • 24 Hofslokken NU. Skattebol L. Acta Chem. Scand. 1999; 53: 258
  • 25 Haynes WM. CRC Handbook of Chemistry and Physics . CRC Press; Boca Raton, Florida: 2012. 93th Ed
  • 26 Baxter EW. Reitz AB. Org. React. 2002; 18: 1
  • 27 Preparation of the known compounds are described in the Supporting Information.
  • 28 Synthesis of Methyl 3-{3-[({2-[(tert- Butoxycarbonyl)amino] ethyl}imino)methyl]-4-hydroxyphenyl}propanoate (4) To a solution of methyl 3-(3-formyl-4-hydroxyphenyl)propanoate (2) (3.00 g, 14.41 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) was added tert-butyl (2-aminoethyl)carbamate (3) (2.54 g, 15.85 mmol, 1.1 equiv). The mixture was stirred at room temperature for 1 h, and then diluted with dichloromethane (40 mL). The reaction mixture was then washed with aq. sodium bisulfite (0.5 M, 50 mL). The product residue in the aqueous phase was recovered by washing four times with dichloromethane. Then, the combined organic phases were dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to give product 4 as an orange oil (quantitative yield). 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 8.32 (s, 1 H, CCHN), 7.15 (dd, 3 J H–H = 8.4 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHCCH), 7.09 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC), 6.90 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHCCH), 4.72 (br s, 1 H, NH), 3.70 (t, 3 J H–H = 5.7 Hz, 2 H, CH 2CH2NHBoc), 3.66 (s, 3 H, OCH3), 3.45 (m, 2 H, CH2CH 2NHBoc), 2.90 (t, 3 J H–H = 7.7 Hz, 2 H, CH 2CH2CO2), 2.60 (t, 3 J H–H = 7.7 Hz, 2 H, CH2CH 2CO2), 1.43 (s, 9 H, C(CH3)3) ppm. 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.40 (CO2CH3), 166.59 (COH), 159.57 (CCHN), 155.98 (Boc CO2), 132.65 (CHCHCCH), 131.10 (CHCHCCH), 130.81 (CCHC), 118.60 (CCHN), 117.24 (CHCHCCH), 79.71 (BocCO2 CCH3), 59.57 (CH2CH2NHBoc), 51.78 (CO2 CH3), 41.37 (CH2 CH2NHBoc), 36.00 (CH2 CH2CO2), 30.07 (CH2CH2CO2), 28.51 (C(CH3)3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C18H27N2O5: 351.1914; found: 351.1914. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C18H25N2O5: 349.1769; found: 349.1769. Synthesis of Methyl 3-{3-[({2-[(tert-Butoxycarbonyl)amino] ethyl}amino)methyl]-4-hydroxyphenyl}propanoate (5) A solution of compound 4 (4.90 g, 14.00 mmol, 1.0 equiv) in 2,2,2-trifluoroethanol (60 mL) was cooled in an ice-bath. Sodium borohydride (1.32 g, 35 mmol, 2.5 equiv) was added in portions and then the reaction mixture was allowed to warm to room temperature. After being stirred under an inert atmosphere at room temperature for one hour, the reaction was quenched with water (50 mL). The product was extracted with dichloromethane and the organic layer was dried over sodium sulfate and filtered. By removal of the solvent under reduced pressure compound 5 was obtained as a colorless oil in quantitative yield. This product was almost pure and used in the next step without further purification. However, for spectroscopic characterization it was purified through HPLC. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 6.98 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHCCH), 6.81 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC), 6.74 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHCCH), 4.75 (br s, 1 H, CH2NHCH2), 3.97 (s, 2 H, CCH 2NH), 3.66 (s, 3 H, OCH3), 3.28 (m, 2 H, CH 2NHBoc), 2.83 (t, 3 J H–H = 7.7 Hz, 2 H, CH 2CH2CO2), 2.78 (t, 3 J H–H = 5.7 Hz, 2 H, CH 2CH2NHBoc), 2.56 (t, 3 J H–H = 7.7 Hz, 2 H, CH2CH 2CO2), 1.44 (s, 9 H, C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.62 (CO2CH3), 156.51 (Boc CO2 ), 156.33 (COH), 131.16 (CHCHCCH), 128.63 (CCHC), 128.47 (CHCHCCH), 122.27 (CCH2NH), 116.52 (CHCHCCH), 79.78 (BocCO2 CCH3), 52.48 (CCH2NH), 51.70 (CO2 CH3), 48.55 (CH2CH2NHBoc), 40.16 (CH2NHBoc), 36.20 (CH2 CH2CO2), 30.24 (CH2CH2CO2), 28.50 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C18H29N2O5: 353.2071; found: 353.2071. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C18H27N2O5: 351.1925; found: 351.1925. Synthesis of [Methyl 3-(3-{[(2- Aminoethyl)amino]methyl}-4-hydroxyphenyl)propanoate] Dihydrochloride (6) Compound 5 (4.90 g, 13.90 mmol) was dissolved in 4 M HCl in dioxane (20 mL). After being stirred at room temperature for 15 min, diethyl ether (40 mL) was added and the reaction mixture stirred for another 5 min. The white precipitate was filtered, washed with diethyl ether and dried under vacuum to give salt 6 (4.04 g, 12.37 mmol, 89%). Mp 190–191 °C. 1H NMR (400.13 MHz, D2O, 25 °C): δ = 7.24 (m, 2 H, CHCHCCH), 6.94 (d, 3 J H–H = 9.0 Hz, 1 H, CHCHCCH), 4.31 (s, 2 H, BnCH 2), 3.66 (s, 3 H, OCH 3), 3.45 (m, 4 H, CH 2CH 2NH), 2.89 (t, 3 J H–H = 7.3 Hz, 2 H, CH 2CH2CO2), 2.70 (t, 3 J H–H = 7.3 Hz, 2 H, CH2CH 2CO2). 13C{1H} NMR (100.61 MHz, D2O, 25 °C): δ = 176.50 (CO2CH3), 153.48 (COH), 132.68 (CHCHCCH), 131.49 (CCHC), 131.42 (CHCHCCH), 116.80 (CCH2N), 115.70 (CHCHCCH), 52.16 (CO2 CH3),47.42 (Bn CH2), 43.48 (ArCH2NHCH2), 35.45 (CH2NH2), 35.40 (CH2 CH2CO2), 29.25 (CH2CH2CO2) ppm. Anal. Calcd. (included 3.56% water; hydroscopic salt) C: 46.30, H: 6.97, N: 8.31; found C: 46.46, H: 6.88, N: 8.13. Synthesis of tert-Butyl 3-(4-Hydroxy-3-{[(2-{[2-hydroxy-5-(3-methoxy-3-oxopropyl)benzyl]amino}ethyl)imino] methyl}phenyl)propanoate (9) Dry triethylamine (1.51 g, 14.88 mmol, 3 equiv) was added to a solution of compound 6 (1.77 g, 5.46 mmol, 1.1 equiv) in absolute methanol (25 mL). To this mixture was added aldehyde 8 (1.24 g, 4.96 mmol, 1 equiv) and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with dichloromethane (50 mL) and washed with sodium bicarbonate solution (0.5 M, 50 mL). The product residue was recovered from the aqueous phase by washing four times with dichloromethane. The combined organic phase was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to give product 9 as orange solid in quantitative yield. Mp 77–79 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 8.35 (s, 1 H, CCHN), 7.15 (dd, 3 J H–H = 8.4 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHC-(CH2)2CO2Me), 7.08 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC-(CH2)2CO2Me), 6.98 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.1 Hz, 1 H, CHCHC-(CH2)2CO2 t-Bu), 6.88 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHC-(CH2)2CO2Me), 6.81 (d, 4 J H–H = 2.1 Hz, 1 H, CCHC-(CH2)2CO2 t-Bu), 6.74 (d, 3 J H–H = 8.2 Hz, 1 H, CHCHC-(CH2)2CO2 t-Bu), 3.98 (s, 2 H, BnCH 2), 3.75 (t, 3 J H–H = 5.3 Hz, 2 H, CH 2CH2NH), 3.65 (s, 3 H, OCH 3), 3.00 (t, 3 J H–H = 5.3 Hz, 2 H, CH2CH 2NH), 2.83 (m, 4 H, CH 2CH2CO2Me and CH 2CH2CO2 t-Bu), 2.56 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2Me), 2.50 (t, 3 J H–H = 7.6 Hz, 2 H, CH2CH 2CO2 t-Bu), 1.40 (s, 9 H, C(CH3 )3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.58 (CO2CH3), 172.28 (CO2t-Bu), 166.76 (CCHN), 159.31 (C(OH)CCH(imine)), 156.53 (C(OH)CCH2), 132.82 (CHCHC-(CH2)2CO2Me), 131.17 (C-(CH2)2CO2Me and C-(CH2)2CO2 t-Bu), 131.15 (CCHC-(CH2)2CO2Me), 128.60 (CCHC-(CH2)2CO2 t-Bu), 128.45 (CHCHC-(CH2)2CO2 t-Bu), 122.17 (CCH2NH), 118.4 (CCHN), 117.24 (CHCHC-(CH2)2-CO2 t-Bu), 116.51 (CHCHC-(CH2)2CO2Me), 80.52 (CO2 CCH3), 59.31 (CH2CH2NH), 52.53 (Bn CH2), 51.67 (CO2 CH3), 48.60 (CH2 CH2NH), 37.33 (CH2 CH2CO2 t-Bu), 36.18 (CH2CH2CO2Me), 30.22 (CH2CH2CO2Me), 30.19 (CH2CH2CO2 t-Bu), 28.18 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C27H37N2O6: 485.2646; found: 485.2649; C27H36N2NaO6: 507.2471; found: 507.2474. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C27H35N2O6: 483.2501; found: 483.2500. Synthesis of tert-Butyl 3-(4-hydroxy-3-{[(2-{[2-hydroxy-5-(3-methoxy-3-oxopropyl)benzyl]amino}ethyl)amino]methyl} phenyl)propanoate (10) A solution of compound 9 (2.33 g, 4.80 mmol, 1.0 equiv) in 2,2,2-trifluoroethanol (50 mL) was cooled in an ice-bath. Sodium borohydride (0.45 g, 12 mmol, 2.5 equiv) was added in portions to this solution, and then the reaction mixture was allowed to warm to room temperature. After being stirred under inert gas atmosphere at room temperature for one hour, the reaction was quenched with water (50 mL). The product was extracted with dichloromethane and the organic layer was dried over sodium sulfate and filtered. By removal of the solvent under reduced pressure white solid 10 was obtained in quantitative yield. Mp 74–76 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 6.98 (d, 3 J H–H = 8.2 Hz, 2 H, CHCHC-(CH2)2CO2Me and CHCHC-(CH2)2CO2 t-Bu), 6.80 (br s, 2 H, CCHC-(CH2)2CO2Me and CCHC-(CH2)2CO2 t-Bu), 6.73 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.2 Hz, 2 H, CHCHC-(CH2)2CO2Me and CHCHC-(CH2)2CO2 t-Bu), 3.94 (s, 2 H, BnCH 2), 3.65 (s, 3 H, OCH 3), 2.81 (m, 8 H, NH(CH 2)2NH, CH 2CH2CO2Me and CH 2CH2CO2 t-Bu), 2.56 (t, 3 J H–H = 7.5 Hz, 2 H, CH2CH 2CO2Me), 2.50 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2 t-Bu), 1.41 (s, 9 H, C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.60 (CO2CH3), 172.56 (CO2 t-Bu), 156.38 (COH), 156.53 (COH), 131.49 (C-(CH2)2CO2Me), 131.20 (C-(CH2)2CO2 t-Bu), 128.70 (CCHC-(CH2)2CO2Me), 128.62 (CCHC-(CH2)2CO2 t-Bu), 128.48 (CHCHC-(CH2)2CO2Me), 128.44 (CHCHC-(CH2)2CO2 t-Bu), 122.22 (CCHC-(CH2)2CO2Me), 122.06 (CCHC-(CH2)2CO2 t-Bu), 116.46 (CHCHC-(CH2)2CO2Me), 116.34 (CHCHC-(CH2)2CO2 t-Bu), 80.37 (CO2 CCH3), 52.70 (Bn CH2), 51.68 (CO2 CH3), 47.97 (CH2 CH2NH-ArCO2Me), 47.93 (CH2 CH2NH-ArCO2 t-Bu), 37.55 (CH2 CH2CO2 t-Bu), 36.16 (CH2 CH2CO2Me), 30.38 (CH2CH2CO2 t-Bu), 30.20 (CH2CH2CO2Me), 28.18 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C27H39N2O6: 487.2803; found: 487.2816. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C27H37N2O6: 485.2657; found: 485.2657. Synthesis of 3-(3-{[(2-{[5-(2-tert-Butoxycarbonylethyl)-2-hydroxybenzyl]-tert-butoxycarbonylmethylamino}ethyl)-tert-butoxycarbonylmethylamino]methyl}-4-hydroxyphenyl)propionic Acid [HBED-CC-tris(tert-butyl ester)] Compound 10 (1.10 g, 2.26 mmol, 1 equiv) and anhydrous sodium carbonate (0.96 g, 9.06 mmol, 4 equiv) were suspended in anhydrous acetonitrile (25 mL). To this mixture was added tert-butyl 2-bromoacetate (0.93 g, 4.76 mmol, 2.1 equiv). The reaction mixture stirred for 3.5 h under reflux conditions. It was cooled to room temperature, filtered and the solvent was removed under reduced pressure. Then the residue was dissolved in methanol (15 mL), followed by dilution with water (10 mL). To this mixture was added sodium hydroxide solution (4 M, 5 mL) slowly. After being stirred for 1 h, the reaction mixture was cooled in an ice-bath and the pH was adjusted to 5–6 with HCl (0.5 M, ca. 40 mL). The crude product was extracted with ethyl acetate and the organic phase was dried over sodium sulfate, filtered, concentrated under reduced pressure and purified by flash column chromatography (ethyl acetate–hexane, 3:2) to give HBED-CC-tris(tert-butyl ester) as a colorless solid (0.53 g, 0.76 mmol, 33.4%). Note: The overall product yield was 28%. Mp 43–45 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 7.00 (sept, 2 H, CHCHC-(CH2)2CO2H and CHCHC-(CH2)2CO2 t-Bu), 6.76 (m, 4 H, CCHC-(CH2)2CO2H, CCHC-(CH2)2CO2 t-Bu, CHCHC-(CH2)2CO2H and CHCHC-(CH2)2CO2 t-Bu), 3.68 (d, 4 H, BnCH 2), 3.16 (d, 4 H, t-BuO2CH 2N), 2.84 (t, 3 J H–H = 7.6 Hz, 2 H, CH 2CH2CO2H), 2.78 (t, 3 J H–H = 7.8 Hz, 2 H, CH 2CH2CO2 t-Bu), 2.66 (s br, 4 H, N(CH 2)2N), 2.61 (t, 3 J H–H = 7.6 Hz, 2 H, CH2CH 2CO2H), 2.46 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2t-Bu), 1.45 (d, 18 H, NCH2CO2C(CH 3)3), 1.41 (s, 9 H, CH2CH2CO2C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 176.93 (CO2H), 172.72 (CH2CH2 CO2 t-Bu), 170.30 ([NCH2 CO2 t-Bu]-ArCO2H), 170.27 ([NCH2 CO2 t-Bu]-ArCO2 t-Bu), 155.94 (COH), 155.71 (COH), 131.52 (C-(CH2)2CO2H), 130.87 (C-(CH2)2CO2 t-Bu), 129.44 (CCHC-(CH2)2CO2H), 129.16 (CCHC-(CH2)2CO2 t-Bu), 129.11 (CHCHC-(CH2)2CO2H), 129.08 (CHCHC-(CH2)2CO2 t-Bu), 121.71 (CCHC-(CH2)2CO2H), 121.47 (CCHC-(CH2)2CO2 t-Bu), 116.63 (CHCHC-(CH2)2CO2H), 116.46 (CHCHC-(CH2)2CO2 t-Bu), 82.38 ([NCH2CO2 CCH3]-ArCO2H), 82.30 ([NCH2CO2 CCH3]-ArCO2 t-Bu), 80.49 (-(CH2)2CO2 CCH3), 58.13 (Bn C-ArCO2H), 58.06 (Bn C-ArCO2 t-Bu), 55.87 ([NCH2CO2]-ArCO2H), 55.69 ([NCH2CO2]-ArCO2 t-Bu), 50.32 (NCH2 CH2N), 37.59 (CH2 CH2CO2 t-Bu), 35.88 (CH2 CH2CO2H), 30.39 (CH2CH2CO2 t-Bu), 30.01 (CH2CH2CO2H), 28.20 (C(CH3 )). HRMS (ESI+, MeOH): m/z calcd for C38H57N2O10: 701.4008; found: 701.4027. HRMS (ESI–, MeOH): m/z calcd for C38H55N2O10: 699.3862; found: 699.3861. Anal. Calcd. (%) C: 65.12, H: 8.05, N: 4.00; found C: 65.35, H: 7.95, N: 3.91.

  • References and Notes

  • 1 Ambrosini V. Fani M. Fanti S. Forrer F. Maecke HR. J. Nucl. Med. 2011; 52: 42
  • 2 Chen K. Conti PS. Adv. Drug Deliv ery Rev. 2010; 62: 1005
  • 3 Velikyan I. Theranostics 2012; 2: 424
  • 4 Chaturvedi S. Mishra AK. Front. Med. 2016; 3: 1
  • 5 Pimlott SL. Sutherland A. Chem. Soc. Rev. 2011; 40: 149
    • 6a Hope TA. Truillet C. Ehman EC. Afshar-Oromieh A. Aggarwal R. Ryan CJ. Carroll PR. Small EJ. Evans MJ. J. Nucl. Med. 2017; 58: 81
    • 6b Hope TA. Aggarwal R. Chee B. Tao D. Greene KL. Cooperberg MR. Feng F. Chang A. Ryan CJ. Small EJ. Carroll PR. J. Nucl. Med. 2017; 58: 1956
    • 6c Fendler WP. Eiber M. Beheshti M. Bomanji J. Ceci F. Cho S. Giesel F. Haberkorn U. Hope TA. Kopka K. Krause BJ. Mottaghy FM. Schöder H. Sunderland J. Wan S. Wester HJ. Fanti S. Herrmann K. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1014
    • 7a McCarthy M. Langton T. Kumar D. Campbell A. Eur. J. Nucl. Med. Mol. Imaging 2017; 44: 1455
    • 7b Baranski AC. Schäfer M. Bauder-Wüst U. Wacker A. Schmidt J. Liolios C. Mier W. Haberkorn U. Eisenhut M. Kopka K. Eder M. Bioconjugate Chem. 2017; 28: 2485
  • 8 Pyka T. Weirich G. Einspieler I. Maurer T. Theisen J. Hatzichristodoulou G. Schwamborn K. Schwaiger M. Eiber M. J. Nucl. Med. 2016; 57: 367
  • 9 Rauscher I. Maurer T. Beer AJ. Graner F.-P. Haller B. Weirich G. Doherty A. Gschwend JE. Schwaiger M. Eiber M. J. Nucl. Med. 2016; 57: 1713
  • 10 Haberkorn U. Eder M. Kopka K. Babich JW. Eisenhut M. Clin. Cancer Res. 2016; 22: 9
  • 11 Verburg FA. Krohn T. Heinzel A. Mottaghy FM. Behrendt FF. Eur. J. Nucl. Med. Mol. Imaging 2015; 42: 1622
  • 12 Afshar-Oromieh A. Zechmann CM. Malcher A. Eder M. Eisenhut M. Linhart HG. Holland-Letz T. Hadaschik BA. Giesel FL. Debus JJ. Haberkorn U. Eur. J. Nucl. Med. Mol. Imaging 2014; 41: 11
  • 13 Eder M. Knackmuss S. Le Gall F. Reusch U. Rybin V. Little M. Haberkorn U. Mier W. Eisenhut M. Eur. J. Nucl. Med. Mol. Imaging 2010; 37: 1397
    • 14a Zöller M. Schuhmacher J. Reed J. Maier-Borst W. Matzku S. J. Nucl. Med. 1992; 33: 1366
    • 14b Schuhmacher J. Klivenyi G. Hull WE. Matys R. Hauser H. Kalthoff H. Schmiegel WH. Maier-Borst W. Matzku S. Nucl. Med. Biol. 1992; 19: 809
  • 15 Trencsényi G. Dénes N. Nagy G. Kis A. Vida A. Farkas F. Szabó JP. Kovács T. Berényi E. Garai I. Bai P. Hunyadi J. Kertész I. J. Pharm. Biomed. Anal. 2017; 139: 54
  • 16 Kung HF. Wu Z. Choi SR. Ploessl K. Zha Z. PCT Int. Appl WO 2017007790, 2017
  • 17 Zha Z. Song J. Choi SR. Wu Z. Ploessl K. Smith M. Kung H. Bioconjugate Chem. 2016; 27: 1314
  • 18 Liolios C. Schäfer M. Haberkorn U. Eder M. Kopka K. Bioconjug ate Chem. 2016; 27: 737
  • 19 Eder M. Schäfer M. Bauder-Wüst U. Hull WE. Wängler C. Mier W. Haberkorn U. Eisenhut M. Bioconjug ate Chem. 2012; 23: 688
  • 20 Eder M. Wängler B. Knackmuss S. LeGall F. Little M. Haberkorn U. Mier W. Eisenhut M. Eur. J. Nucl. Med. Mol. Imaging 2008; 35: 1878
  • 21 Commercially known as EBED-CC-tris(tBu)ester; chemical name: 3-(3-{[(2-{[5-(2-tert-butoxycarbonyl-ethyl)-2-hydroxy-benzyl]-tert-butoxycarbonylmethyl-amino}-ethyl)-tert-butoxycarbonylmethyl-amino]-methyl}-4-hydroxy-phenyl)-propionic acid.
  • 22 Motekaitis RJ. Martell AE. Welch MJ. Inorg. Chem. 1990; 29: 1463
  • 23 Rauniyar V. Hall DG. J. Org. Chem. 2009; 74: 4236
  • 24 Hofslokken NU. Skattebol L. Acta Chem. Scand. 1999; 53: 258
  • 25 Haynes WM. CRC Handbook of Chemistry and Physics . CRC Press; Boca Raton, Florida: 2012. 93th Ed
  • 26 Baxter EW. Reitz AB. Org. React. 2002; 18: 1
  • 27 Preparation of the known compounds are described in the Supporting Information.
  • 28 Synthesis of Methyl 3-{3-[({2-[(tert- Butoxycarbonyl)amino] ethyl}imino)methyl]-4-hydroxyphenyl}propanoate (4) To a solution of methyl 3-(3-formyl-4-hydroxyphenyl)propanoate (2) (3.00 g, 14.41 mmol, 1.0 equiv) in anhydrous dichloromethane (10 mL) was added tert-butyl (2-aminoethyl)carbamate (3) (2.54 g, 15.85 mmol, 1.1 equiv). The mixture was stirred at room temperature for 1 h, and then diluted with dichloromethane (40 mL). The reaction mixture was then washed with aq. sodium bisulfite (0.5 M, 50 mL). The product residue in the aqueous phase was recovered by washing four times with dichloromethane. Then, the combined organic phases were dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to give product 4 as an orange oil (quantitative yield). 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 8.32 (s, 1 H, CCHN), 7.15 (dd, 3 J H–H = 8.4 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHCCH), 7.09 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC), 6.90 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHCCH), 4.72 (br s, 1 H, NH), 3.70 (t, 3 J H–H = 5.7 Hz, 2 H, CH 2CH2NHBoc), 3.66 (s, 3 H, OCH3), 3.45 (m, 2 H, CH2CH 2NHBoc), 2.90 (t, 3 J H–H = 7.7 Hz, 2 H, CH 2CH2CO2), 2.60 (t, 3 J H–H = 7.7 Hz, 2 H, CH2CH 2CO2), 1.43 (s, 9 H, C(CH3)3) ppm. 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.40 (CO2CH3), 166.59 (COH), 159.57 (CCHN), 155.98 (Boc CO2), 132.65 (CHCHCCH), 131.10 (CHCHCCH), 130.81 (CCHC), 118.60 (CCHN), 117.24 (CHCHCCH), 79.71 (BocCO2 CCH3), 59.57 (CH2CH2NHBoc), 51.78 (CO2 CH3), 41.37 (CH2 CH2NHBoc), 36.00 (CH2 CH2CO2), 30.07 (CH2CH2CO2), 28.51 (C(CH3)3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C18H27N2O5: 351.1914; found: 351.1914. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C18H25N2O5: 349.1769; found: 349.1769. Synthesis of Methyl 3-{3-[({2-[(tert-Butoxycarbonyl)amino] ethyl}amino)methyl]-4-hydroxyphenyl}propanoate (5) A solution of compound 4 (4.90 g, 14.00 mmol, 1.0 equiv) in 2,2,2-trifluoroethanol (60 mL) was cooled in an ice-bath. Sodium borohydride (1.32 g, 35 mmol, 2.5 equiv) was added in portions and then the reaction mixture was allowed to warm to room temperature. After being stirred under an inert atmosphere at room temperature for one hour, the reaction was quenched with water (50 mL). The product was extracted with dichloromethane and the organic layer was dried over sodium sulfate and filtered. By removal of the solvent under reduced pressure compound 5 was obtained as a colorless oil in quantitative yield. This product was almost pure and used in the next step without further purification. However, for spectroscopic characterization it was purified through HPLC. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 6.98 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHCCH), 6.81 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC), 6.74 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHCCH), 4.75 (br s, 1 H, CH2NHCH2), 3.97 (s, 2 H, CCH 2NH), 3.66 (s, 3 H, OCH3), 3.28 (m, 2 H, CH 2NHBoc), 2.83 (t, 3 J H–H = 7.7 Hz, 2 H, CH 2CH2CO2), 2.78 (t, 3 J H–H = 5.7 Hz, 2 H, CH 2CH2NHBoc), 2.56 (t, 3 J H–H = 7.7 Hz, 2 H, CH2CH 2CO2), 1.44 (s, 9 H, C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.62 (CO2CH3), 156.51 (Boc CO2 ), 156.33 (COH), 131.16 (CHCHCCH), 128.63 (CCHC), 128.47 (CHCHCCH), 122.27 (CCH2NH), 116.52 (CHCHCCH), 79.78 (BocCO2 CCH3), 52.48 (CCH2NH), 51.70 (CO2 CH3), 48.55 (CH2CH2NHBoc), 40.16 (CH2NHBoc), 36.20 (CH2 CH2CO2), 30.24 (CH2CH2CO2), 28.50 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C18H29N2O5: 353.2071; found: 353.2071. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C18H27N2O5: 351.1925; found: 351.1925. Synthesis of [Methyl 3-(3-{[(2- Aminoethyl)amino]methyl}-4-hydroxyphenyl)propanoate] Dihydrochloride (6) Compound 5 (4.90 g, 13.90 mmol) was dissolved in 4 M HCl in dioxane (20 mL). After being stirred at room temperature for 15 min, diethyl ether (40 mL) was added and the reaction mixture stirred for another 5 min. The white precipitate was filtered, washed with diethyl ether and dried under vacuum to give salt 6 (4.04 g, 12.37 mmol, 89%). Mp 190–191 °C. 1H NMR (400.13 MHz, D2O, 25 °C): δ = 7.24 (m, 2 H, CHCHCCH), 6.94 (d, 3 J H–H = 9.0 Hz, 1 H, CHCHCCH), 4.31 (s, 2 H, BnCH 2), 3.66 (s, 3 H, OCH 3), 3.45 (m, 4 H, CH 2CH 2NH), 2.89 (t, 3 J H–H = 7.3 Hz, 2 H, CH 2CH2CO2), 2.70 (t, 3 J H–H = 7.3 Hz, 2 H, CH2CH 2CO2). 13C{1H} NMR (100.61 MHz, D2O, 25 °C): δ = 176.50 (CO2CH3), 153.48 (COH), 132.68 (CHCHCCH), 131.49 (CCHC), 131.42 (CHCHCCH), 116.80 (CCH2N), 115.70 (CHCHCCH), 52.16 (CO2 CH3),47.42 (Bn CH2), 43.48 (ArCH2NHCH2), 35.45 (CH2NH2), 35.40 (CH2 CH2CO2), 29.25 (CH2CH2CO2) ppm. Anal. Calcd. (included 3.56% water; hydroscopic salt) C: 46.30, H: 6.97, N: 8.31; found C: 46.46, H: 6.88, N: 8.13. Synthesis of tert-Butyl 3-(4-Hydroxy-3-{[(2-{[2-hydroxy-5-(3-methoxy-3-oxopropyl)benzyl]amino}ethyl)imino] methyl}phenyl)propanoate (9) Dry triethylamine (1.51 g, 14.88 mmol, 3 equiv) was added to a solution of compound 6 (1.77 g, 5.46 mmol, 1.1 equiv) in absolute methanol (25 mL). To this mixture was added aldehyde 8 (1.24 g, 4.96 mmol, 1 equiv) and the reaction mixture was stirred for 1 h at room temperature. The reaction mixture was diluted with dichloromethane (50 mL) and washed with sodium bicarbonate solution (0.5 M, 50 mL). The product residue was recovered from the aqueous phase by washing four times with dichloromethane. The combined organic phase was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure to give product 9 as orange solid in quantitative yield. Mp 77–79 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 8.35 (s, 1 H, CCHN), 7.15 (dd, 3 J H–H = 8.4 Hz, 4 J H–H = 2.2 Hz, 1 H, CHCHC-(CH2)2CO2Me), 7.08 (d, 4 J H–H = 2.2 Hz, 1 H, CCHC-(CH2)2CO2Me), 6.98 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.1 Hz, 1 H, CHCHC-(CH2)2CO2 t-Bu), 6.88 (d, 3 J H–H = 8.4 Hz, 1 H, CHCHC-(CH2)2CO2Me), 6.81 (d, 4 J H–H = 2.1 Hz, 1 H, CCHC-(CH2)2CO2 t-Bu), 6.74 (d, 3 J H–H = 8.2 Hz, 1 H, CHCHC-(CH2)2CO2 t-Bu), 3.98 (s, 2 H, BnCH 2), 3.75 (t, 3 J H–H = 5.3 Hz, 2 H, CH 2CH2NH), 3.65 (s, 3 H, OCH 3), 3.00 (t, 3 J H–H = 5.3 Hz, 2 H, CH2CH 2NH), 2.83 (m, 4 H, CH 2CH2CO2Me and CH 2CH2CO2 t-Bu), 2.56 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2Me), 2.50 (t, 3 J H–H = 7.6 Hz, 2 H, CH2CH 2CO2 t-Bu), 1.40 (s, 9 H, C(CH3 )3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.58 (CO2CH3), 172.28 (CO2t-Bu), 166.76 (CCHN), 159.31 (C(OH)CCH(imine)), 156.53 (C(OH)CCH2), 132.82 (CHCHC-(CH2)2CO2Me), 131.17 (C-(CH2)2CO2Me and C-(CH2)2CO2 t-Bu), 131.15 (CCHC-(CH2)2CO2Me), 128.60 (CCHC-(CH2)2CO2 t-Bu), 128.45 (CHCHC-(CH2)2CO2 t-Bu), 122.17 (CCH2NH), 118.4 (CCHN), 117.24 (CHCHC-(CH2)2-CO2 t-Bu), 116.51 (CHCHC-(CH2)2CO2Me), 80.52 (CO2 CCH3), 59.31 (CH2CH2NH), 52.53 (Bn CH2), 51.67 (CO2 CH3), 48.60 (CH2 CH2NH), 37.33 (CH2 CH2CO2 t-Bu), 36.18 (CH2CH2CO2Me), 30.22 (CH2CH2CO2Me), 30.19 (CH2CH2CO2 t-Bu), 28.18 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C27H37N2O6: 485.2646; found: 485.2649; C27H36N2NaO6: 507.2471; found: 507.2474. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C27H35N2O6: 483.2501; found: 483.2500. Synthesis of tert-Butyl 3-(4-hydroxy-3-{[(2-{[2-hydroxy-5-(3-methoxy-3-oxopropyl)benzyl]amino}ethyl)amino]methyl} phenyl)propanoate (10) A solution of compound 9 (2.33 g, 4.80 mmol, 1.0 equiv) in 2,2,2-trifluoroethanol (50 mL) was cooled in an ice-bath. Sodium borohydride (0.45 g, 12 mmol, 2.5 equiv) was added in portions to this solution, and then the reaction mixture was allowed to warm to room temperature. After being stirred under inert gas atmosphere at room temperature for one hour, the reaction was quenched with water (50 mL). The product was extracted with dichloromethane and the organic layer was dried over sodium sulfate and filtered. By removal of the solvent under reduced pressure white solid 10 was obtained in quantitative yield. Mp 74–76 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 6.98 (d, 3 J H–H = 8.2 Hz, 2 H, CHCHC-(CH2)2CO2Me and CHCHC-(CH2)2CO2 t-Bu), 6.80 (br s, 2 H, CCHC-(CH2)2CO2Me and CCHC-(CH2)2CO2 t-Bu), 6.73 (dd, 3 J H–H = 8.2 Hz, 4 J H–H = 2.2 Hz, 2 H, CHCHC-(CH2)2CO2Me and CHCHC-(CH2)2CO2 t-Bu), 3.94 (s, 2 H, BnCH 2), 3.65 (s, 3 H, OCH 3), 2.81 (m, 8 H, NH(CH 2)2NH, CH 2CH2CO2Me and CH 2CH2CO2 t-Bu), 2.56 (t, 3 J H–H = 7.5 Hz, 2 H, CH2CH 2CO2Me), 2.50 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2 t-Bu), 1.41 (s, 9 H, C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 173.60 (CO2CH3), 172.56 (CO2 t-Bu), 156.38 (COH), 156.53 (COH), 131.49 (C-(CH2)2CO2Me), 131.20 (C-(CH2)2CO2 t-Bu), 128.70 (CCHC-(CH2)2CO2Me), 128.62 (CCHC-(CH2)2CO2 t-Bu), 128.48 (CHCHC-(CH2)2CO2Me), 128.44 (CHCHC-(CH2)2CO2 t-Bu), 122.22 (CCHC-(CH2)2CO2Me), 122.06 (CCHC-(CH2)2CO2 t-Bu), 116.46 (CHCHC-(CH2)2CO2Me), 116.34 (CHCHC-(CH2)2CO2 t-Bu), 80.37 (CO2 CCH3), 52.70 (Bn CH2), 51.68 (CO2 CH3), 47.97 (CH2 CH2NH-ArCO2Me), 47.93 (CH2 CH2NH-ArCO2 t-Bu), 37.55 (CH2 CH2CO2 t-Bu), 36.16 (CH2 CH2CO2Me), 30.38 (CH2CH2CO2 t-Bu), 30.20 (CH2CH2CO2Me), 28.18 (C(CH3 )3). HRMS (ESI+, CH2Cl2/MeOH): m/z calcd for C27H39N2O6: 487.2803; found: 487.2816. HRMS (ESI-, CH2Cl2/MeOH): m/z calcd for C27H37N2O6: 485.2657; found: 485.2657. Synthesis of 3-(3-{[(2-{[5-(2-tert-Butoxycarbonylethyl)-2-hydroxybenzyl]-tert-butoxycarbonylmethylamino}ethyl)-tert-butoxycarbonylmethylamino]methyl}-4-hydroxyphenyl)propionic Acid [HBED-CC-tris(tert-butyl ester)] Compound 10 (1.10 g, 2.26 mmol, 1 equiv) and anhydrous sodium carbonate (0.96 g, 9.06 mmol, 4 equiv) were suspended in anhydrous acetonitrile (25 mL). To this mixture was added tert-butyl 2-bromoacetate (0.93 g, 4.76 mmol, 2.1 equiv). The reaction mixture stirred for 3.5 h under reflux conditions. It was cooled to room temperature, filtered and the solvent was removed under reduced pressure. Then the residue was dissolved in methanol (15 mL), followed by dilution with water (10 mL). To this mixture was added sodium hydroxide solution (4 M, 5 mL) slowly. After being stirred for 1 h, the reaction mixture was cooled in an ice-bath and the pH was adjusted to 5–6 with HCl (0.5 M, ca. 40 mL). The crude product was extracted with ethyl acetate and the organic phase was dried over sodium sulfate, filtered, concentrated under reduced pressure and purified by flash column chromatography (ethyl acetate–hexane, 3:2) to give HBED-CC-tris(tert-butyl ester) as a colorless solid (0.53 g, 0.76 mmol, 33.4%). Note: The overall product yield was 28%. Mp 43–45 °C. 1H NMR (400.13 MHz, CDCl3, 25 °C): δ = 7.00 (sept, 2 H, CHCHC-(CH2)2CO2H and CHCHC-(CH2)2CO2 t-Bu), 6.76 (m, 4 H, CCHC-(CH2)2CO2H, CCHC-(CH2)2CO2 t-Bu, CHCHC-(CH2)2CO2H and CHCHC-(CH2)2CO2 t-Bu), 3.68 (d, 4 H, BnCH 2), 3.16 (d, 4 H, t-BuO2CH 2N), 2.84 (t, 3 J H–H = 7.6 Hz, 2 H, CH 2CH2CO2H), 2.78 (t, 3 J H–H = 7.8 Hz, 2 H, CH 2CH2CO2 t-Bu), 2.66 (s br, 4 H, N(CH 2)2N), 2.61 (t, 3 J H–H = 7.6 Hz, 2 H, CH2CH 2CO2H), 2.46 (t, 3 J H–H = 7.8 Hz, 2 H, CH2CH 2CO2t-Bu), 1.45 (d, 18 H, NCH2CO2C(CH 3)3), 1.41 (s, 9 H, CH2CH2CO2C(CH 3)3). 13C{1H} NMR (100.61 MHz, CDCl3, 25 °C): δ = 176.93 (CO2H), 172.72 (CH2CH2 CO2 t-Bu), 170.30 ([NCH2 CO2 t-Bu]-ArCO2H), 170.27 ([NCH2 CO2 t-Bu]-ArCO2 t-Bu), 155.94 (COH), 155.71 (COH), 131.52 (C-(CH2)2CO2H), 130.87 (C-(CH2)2CO2 t-Bu), 129.44 (CCHC-(CH2)2CO2H), 129.16 (CCHC-(CH2)2CO2 t-Bu), 129.11 (CHCHC-(CH2)2CO2H), 129.08 (CHCHC-(CH2)2CO2 t-Bu), 121.71 (CCHC-(CH2)2CO2H), 121.47 (CCHC-(CH2)2CO2 t-Bu), 116.63 (CHCHC-(CH2)2CO2H), 116.46 (CHCHC-(CH2)2CO2 t-Bu), 82.38 ([NCH2CO2 CCH3]-ArCO2H), 82.30 ([NCH2CO2 CCH3]-ArCO2 t-Bu), 80.49 (-(CH2)2CO2 CCH3), 58.13 (Bn C-ArCO2H), 58.06 (Bn C-ArCO2 t-Bu), 55.87 ([NCH2CO2]-ArCO2H), 55.69 ([NCH2CO2]-ArCO2 t-Bu), 50.32 (NCH2 CH2N), 37.59 (CH2 CH2CO2 t-Bu), 35.88 (CH2 CH2CO2H), 30.39 (CH2CH2CO2 t-Bu), 30.01 (CH2CH2CO2H), 28.20 (C(CH3 )). HRMS (ESI+, MeOH): m/z calcd for C38H57N2O10: 701.4008; found: 701.4027. HRMS (ESI–, MeOH): m/z calcd for C38H55N2O10: 699.3862; found: 699.3861. Anal. Calcd. (%) C: 65.12, H: 8.05, N: 4.00; found C: 65.35, H: 7.95, N: 3.91.

Zoom Image
Scheme 1 Preparation of monovalent radiopharmaceuticals, starting with HBED-CC-tris(tert-butyl ester)
Zoom Image
Scheme 2 Synthesis of HBED-CC-tris(tert-butyl ester)