Synlett 2018; 29(07): 964-968
DOI: 10.1055/s-0036-1591929
letter
© Georg Thieme Verlag Stuttgart · New York

Formal Synthesis of Kanamienamide

Yang Li
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, P. R. of China   Email: yet@pkusz.edu.cn
,
Yian Guo
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, P. R. of China   Email: yet@pkusz.edu.cn
,
Zhengshuang Xu
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, P. R. of China   Email: yet@pkusz.edu.cn
,
Tao Ye  *
Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, P. R. of China   Email: yet@pkusz.edu.cn
› Author Affiliations
We acknowledge financial support from Shenzhen Peacock Plan (KQTD2015071714043444); NSFC (21772009, 21272011, 21572007), SZSTDF (JCYJ20140419131807793, JCYJ20130329175740481, JCYJ20160527100424909, ZDSYS201504301539161) and GDNSF (2014A030312004, 2014B030301003).
Further Information

Publication History

Received: 14 December 2017

Accepted after revision: 10 January 2018

Publication Date:
12 February 2018 (online)


Abstract

A formal total synthesis of the anticancer natural product kanamienamide has been accomplished. This communication describes two approaches to the macrocyclic core of the natural product. The key features of the route include an efficient macrolactamization, a Corey–Bakshi–Shibata asymmetric reduction, and a Stork–Zhao–Wittig olefination.

Supporting Information

 
  • References and Notes

  • 1 Sumimoto S. Iwasaki A. Ohno O. Sueyoshi K. Teruya T. Suenaga K. Org. Lett. 2016; 18: 4884
  • 2 Reddy DP. Zhang N. Yu Z. Wang Z. He Y. J. Org. Chem. 2017; 82: 11262
  • 3 Ojima D. Iwasaki A. Suenaga K. J. Org. Chem. 2017; 82: 12503
    • 4a Liao L. Zhou J. Xu Z. Ye T. Angew. Chem. Int. Ed. 2016; 55: 13263
    • 4b Zhou J. Gao B. Xu Z. Ye T. J. Am. Chem. Soc. 2016; 138: 6948
    • 4c Gunasekera SP. Li Y. Ratnayake R. Luo D. Lo J. Reibenspies JH. Xu Z. Clare-Salzler MJ. Ye T. Paul VJ. Luesch H. Chem. Eur. J. 2016; 22: 8158
    • 4d Liu J. Wang L. Zhang J. Xu Z. Ye T. Chem. Commun. 2016; 52: 1002
    • 4e Qu S. Chen Y. Wang X. Chen S. Xu Z. Ye T. Chem. Commun. 2015; 51: 2510
    • 4f Lei H. Yan J. Yu J. Liu Y. Wang Z. Xu Z. Ye T. Angew. Chem. Int. Ed. 2014; 53: 6533
  • 5 Shapiro G. Chengzhi C. Tetrahedron Lett. 1992; 33: 2447
  • 6 Urbanek RA. Sabes SF. Forsyth CJ. J. Am. Chem. Soc. 1998; 120: 2523
  • 7 Paterson I. Florence GJ. Gerlach K. Scott JP. Sereinig N. J. Am. Chem. Soc. 2001; 123: 9535
    • 8a Blanchette MA. Choy W. Davis JT. Essenfeld AP. Masamune S. Roush WR. Sakai T. Tetrahedron Lett. 1984; 25: 2183
    • 8b Rathke MW. Nowak M. J. Org. Chem. 1985; 50: 2624
    • 9a Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
    • 9b Evans DA. Chapman KT. Bisaha J. J. Am. Chem. Soc. 1988; 110: 1238
    • 10a Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
    • 10b Dess DB. Martin JC. J. Am. Chem. Soc. 1991; 113: 7277
    • 11a Corey EJ. Bakshi RK. Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
    • 11b Corey EJ. Bakshi RK. Shibata S. Chen CP. Singh VK. J. Am. Chem. Soc. 1987; 109: 7925
    • 11c Corey EJ. Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
  • 12 Sajiki H. Hirota K. Tetrahedron 1998; 54: 13981
  • 13 Inanaga J. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
    • 14a Evans DA. Britton TC. Ellman JA. Tetrahedron Lett. 1987; 28: 6141
    • 14b Evans DA. Britton TC. Ellman JA. Dorow RL. J. Am. Chem. Soc. 1990; 112: 4011
    • 15a Bodanszky M. Peptide Chemistry: A Practical Textbook . Springer; New York: 1988
    • 15b Sheehan J. Cruickshank P. Boshart G. J. Org. Chem. 1961; 26: 2525
    • 17a Akaji K. Kuriyama N. Kiso Y. Tetrahedron Lett. 1994; 35: 3315
    • 17b Akaji K. Kuriyama N. Kimura T. Fujiwara Y. Kiso Y. Tetrahedron Lett. 1992; 33: 3177
    • 18a Li P. Xu J.-C. Tetrahedron 2000; 56: 8119
    • 18b Bald E. Saigo K. Mukaiyama T. Chem. Lett. 1975; 4: 1163
  • 19 Hoeg-Jensen T. Holm A. Sorensen H. Synthesis 1996; 383
  • 20 Chen S. Xu J. Tetrahedron Lett. 1991; 32: 6711
  • 21 Li H. Jiang X. Ye Y.-h. Fan C. Romoff T. Goodman M. Org. Lett. 1999; 1: 91
    • 22a Diago-Meseguer J. Palomo-Coll AL. Fernández-Lizarbe JR. Zugaza-Bilbao A. Synthesis 1980; 1980: 547
    • 22b Tung RD. Rich DH. J. Am. Chem. Soc. 1985; 107: 4342
    • 23a Feng W. Yamato K. Yang L. Ferguson JS. Zhong L. Zou S. Yuan L. Zeng XC. Gong B. J. Am. Chem. Soc. 2009; 131: 2629
    • 23b Ferguson JS. Yamato K. Liu R. He L. Zeng XC. Gong B. Angew. Chem. Int. Ed. 2009; 48: 3150
    • 23c Martí-Centelles V. Pandey MD. Burguete MI. Luis SV. Chem. Rev. 2015; 115: 8736
    • 23d Batiste SM. Johnston JN. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 14893
    • 23e Lücke D. Dalton T. Ley SV. Wilson ZE. Chem. Eur. J. 2016; 22: 4206
    • 24a Parenty A. Moreau X. Niel G. Campagne JM. Chem. Rev. 2013; 113: PR1
    • 24b Illuminati G. Mandolini L. Acc. Chem. Res. 1981; 14: 95
    • 24c Galli C. Mandolini L. Eur. J. Org. Chem. 2000; 2000: 3117
  • 25 Stork G. Zhao K. Tetrahedron Lett. 1989; 30: 2173
  • 26 11-[5-Iodopent-4-en-1-yl]-3-isobutyl-4,6,8-trimethyl-1-oxa-4-azacycloundecane-2,5-dione (2) Dess–Martin periodinane (42 mg, 0.1 mmol) was added to a stirred solution of compound 15 (23 mg, 65 µmol) and NaHCO3 (25 mg, 0.3 mmol) in CH2Cl2 (5 mL), and the mixture was stirred at r.t. for 0.5 h. A 2.0 M aqueous solution of Na2S2O3 (1 mL, 2 mmol) was added, and the mixture was extracted with EtOAc (30 mL). The organic layer was washed with brine (10 mL), dried (Na2SO4), and concentrated under reduced pressure to obtain the corresponding aldehyde as a colorless oil that was used in the next step without further purification. A 2.0 M solution of NaHMDS in THF (0.14 mL, 0.28 mmol) was added to an ice-cooled suspension of ICH2P+Ph3 I (160 mg, 0.3 mmol) in THF (5 mL). After 2 min, the mixture was cooled to –78 °C, and a solution of the aldehyde obtained above in THF (5 mL) was added dropwise. The mixture was maintained at –78 ° C for an additional 4 h, and then the reaction was quenched with sat. aq NH4Cl (2 mL). The mixture was extracted with EtOAc (2 × 20 mL), and the organic extracts were combined, dried ­(Na2SO4), and concentrated under reduced pressure. The residue was purified by flash chromatography [silica gel, EtOAc–hexane (1:5)] to give 2 as a colorless oil; yield: 20 mg, (65%); [α]D 20 –48.0 (c = 1.5, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 6.22 (dt, J = 7.4, 1.3 Hz, 1 H), 6.16–6.09 (m, 1 H), 5.09–5.00 (m, 1 H), 4.53 (dd, J = 8.6, 6.8 Hz, 1 H), 2.87 (s, 3 H), 2.86–2.79 (m, 1 H), 2.19–2.09 (m, 2 H), 1.90–1.80 (m, 3 H), 1.75 (t, J = 11.4 Hz, 1 H), 1.67–1.52 (m, 3 H), 1.44–1.37 (m, 2 H), 1.37–1.29 (m, 1 H), 1.17–1.07 (m, 3 H), 1.09 (d, J = 6.7 Hz, 3 H), 1.07–0.96 (m, 1 H), 0.98 (d, J = 6.7 Hz, 3 H), 0.94 (d, J = 6.5 Hz, 3 H), 0.85 (d, J = 6.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 178.9, 173.0, 140.6, 83.2, 77.1, 58.6, 43.4, 38.5, 35.0, 34.5, 34.3, 33.8, 31.6, 30.8, 29.0, 24.9, 23.8, 23.4, 22.4, 21.0, 18.8. HRMS (ESI): m/z [M + H]+ Calcd for C21H37INO3: 478.1813; found: 478.1816.