Synlett 2018; 29(07): 943-948
DOI: 10.1055/s-0036-1591924
letter
© Georg Thieme Verlag Stuttgart · New York

3-(Triflyloxy)benzynes Enable the Regiocontrolled Cycloaddition of Cyclic Ureas to Synthesize 1,4-Benzodiazepine Derivatives

Hideki Kaneko
a   Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
,
a   Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
,
Yuta Yamamoto
b   Department of Chemistry, Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan   Email: ikawa@phs.osaka-u.ac.jp   Email: akai@phs.osaka-u.ac.jp
,
Sundaram Arulmozhiraja
b   Department of Chemistry, Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan   Email: ikawa@phs.osaka-u.ac.jp   Email: akai@phs.osaka-u.ac.jp
,
Hiroaki Tokiwa
b   Department of Chemistry, Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan   Email: ikawa@phs.osaka-u.ac.jp   Email: akai@phs.osaka-u.ac.jp
,
Shuji Akai*
a   Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
› Author Affiliations
This work was financially supported by the JSPS KAKENHI (grant number 16K08164) and a Grant-in-Aid for JSPS (grant number A16J008680), Life Science Research funded by the Japanese Agency for Medical Research and Development (AMED) under Grant Number 17am0101084j0001, the Research Foundation for Pharmaceutical Sciences, and the Kobayashi International Scholarship Foundation.
Further Information

Publication History

Received: 06 December 2017

Accepted after revision: 09 January 2018

Publication Date:
09 February 2018 (online)


Abstract

A versatile synthesis of 1,4-benzodiazepine derivatives through the reaction of various 3-(trifluoromethanesulfonyloxy)benzynes with N-(p-toluenesulfonyl)imidazolidin-2-ones is reported. This reaction system provides a 1,4-benzodiazepine bearing a trifluoromethanesulfonyloxy group as a single regioisomer among the four possible regioisomers.

Supporting Information

 
  • References and Notes


    • For selected recent reviews on benzynes, see:
    • 1a Sanz R. Org. Prep. Proced. Int. 2008; 40: 215
    • 1b Kitamura T. Aust. J. Chem. 2010; 63: 987
    • 1c Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 1d Yoshida S. Hosoya T. Chem. Lett. 2015; 44: 1450
    • 1e Shi J. Li Y. Li Y. Chem. Soc. Rev. 2017; 46: 1707

      For selected recent papers on syntheses of fused heteroaromatics using benzynes, see:
    • 2a Wang T. Hoye TR. J. Am. Chem. Soc. 2016; 138: 13870
    • 2b Pérez-Gómez M. García-López J.-A. Angew. Chem. Int. Ed. 2016; 55: 14389
    • 2c Ikawa T., Sumii Y., Masuda S., Wang D., Emi Y., Takagi A., Akai S.; Synlett; DOI: 10.1055/s-0036-1591722.

      For selected papers on 3-alkoxybenzynes, see:
    • 3a Matsumoto T. Hosoya T. Katsuki M. Suzuki K. Tetrahedron Lett. 1991; 32: 6735
    • 3b Tadross PM. Gilmore CD. Bugga P. Virgil SC. Stoltz BM. Org. Lett. 2010; 12: 1224
    • 3c Umezu S. dos Passos Gomes G. Yoshinaga T. Sakae M. Matsumoto K. Iwata T. Alabugin I. Shindo M. Angew. Chem. Int. Ed. 2017; 56: 1298

      For selected recent papers on silylbenzynes, see:
    • 4a Akai S. Ikawa T. Takayanagi S.-i. Morikawa Y. Mohri S. Tsubakiyama M. Egi M. Wada Y. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 7673
    • 4b Ikawa T. Nishiyama T. Shigeta T. Mohri S. Morita S. Takayanagi S.-i. Terauchi Y. Morikawa Y. Takagi A. Ishikawa Y. Fujii S. Kita Y. Akai S. Angew. Chem. Int. Ed. 2011; 50: 5674
    • 4c Bronner SM. Mackey JL. Houk KN. Garg NK. J. Am. Chem. Soc. 2012; 134: 13966
    • 4d Ikawa T. Takagi A. Goto M. Aoyama Y. Ishikawa Y. Itoh Y. Fujii S. Tokiwa H. Akai S. J. Org. Chem. 2013; 78: 2965
    • 4e Yoshida H. Yoshida R. Takaki K. Angew. Chem. Int. Ed. 2013; 52: 8629
    • 4f Ikawa T. Masuda S. Takagi A. Akai S. Chem. Sci. 2016; 7: 5206

      For selected papers on borylbenzynes, see:
    • 5a Ikawa T. Takagi A. Kurita Y. Saito K. Azechi K. Egi M. Kakiguchi K. Kita Y. Akai S. Angew. Chem. Int. Ed. 2010; 49: 5563
    • 5b Takagi A. Ikawa T. Saito K. Masuda S. Ito T. Akai S. Org. Biomol. Chem. 2013; 11: 8145
    • 5c Yoshida S. Shimomori K. Nonaka T. Hosoya T. Chem. Lett. 2015; 44: 1324 ; see also Ref. 4d

      For selected papers on 3- and 4-(triflyloxy)benzynes, see:
    • 6a Yoshida S. Uchida K. Igawa K. Tomooka K. Hosoya T. Chem. Commun. 2014; 50: 15059
    • 6b Ikawa T. Kaneko H. Masuda S. Ishitsubo E. Tokiwa H. Akai S. Org. Biomol. Chem. 2015; 13: 520
    • 6c Shi J. Qiu D. Wang J. Xu H. Li Y. J. Am. Chem. Soc. 2015; 137: 5670
    • 6d Uchida K. Yoshida S. Hosoya T. Org. Lett. 2017; 19: 1184
    • 6e Uchida K. Yoshida S. Hosoya T. Synthesis 2016; 48: 4099

      For selected papers on biologically active 1,4-benzodiazepines, see:
    • 7a Baud MG. J. Lin-Shiao E. Zengerle M. Tallant C. Ciulli A. J. Med. Chem. 2016; 59: 1492
    • 7b Siegrist R. Pozzi D. Jacob G. Torrisi C. Colas K. Braibant B. Mawet J. Pfeifer T. de Kanter R. Roch C. Kessler M. Corminboeuf O. Bezençon O. J. Med. Chem. 2016; 59: 10661

      For selected recent papers on the synthesis of 1,4-benzodiazepine, see:
    • 8a Li X. Yang L. Zhang X. Zhang-Negrerie D. Du Y. Zhao K. J. Org. Chem. 2014; 79: 955
    • 8b Fier PS. Whittaker AM. Org. Lett. 2017; 19: 1454

      For selected papers on the synthesis of 1,4-benzodiazepine via benzyne or azabenzyne (heteroarynes), see:
    • 9a Yoshida H. Shirakawa E. Honda Y. Hiyama T. Angew. Chem. Int. Ed. 2002; 41: 3247
    • 9b Goetz AE. Garg NK. Nat. Chem. 2013; 5: 54
  • 10 Iwasaki T. Agura K. Maegawa Y. Hayashi Y. Ohshima T. Mashima K. Chem. Eur. J. 2010; 16: 11567
  • 11 Frisch MJ. Trucks GW. Schlegel HB. et al. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford: 2009
  • 12 1,4-Benzodiazepines 4; General ProcedureCsF (3.0 equiv) was flame-dried under reduced pressure in a flask equipped with a three-way stopcock, and the flask was backfilled with argon. Cyclic urea 2 (3.0 equiv) and a magnetic stirrer bar were loaded into the flask, which was subject to three cycles of evacuation and backfilling with argon. 1,4-Dioxane (one-fifth of the total volume of the solvent) was added to the flask from a syringe. A solution of the appropriate precursor 1af (1.0 equiv) in anhyd 1,4-dioxane (one-fifth of total volume) was added to the flask through a cannula, which was washed with 1,4-dioxane (three-fifth of total volume). The mixture was then stirred at 80 °C for 30–60 min until the benzyne reaction was complete (TLC). The reaction was then quenched by addition of H2O. The aqueous phase was extracted with EtOAc (×3), and the organic phases were combined, washed with sat. brine, and dried (MgSO4). The solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography (silica gel, hexane–EtOAc).
  • 13 1-Methyl-5-oxo-4-tosyl-2,3,4,5-tetrahydro-1H-1,4-benzodiazepin-6-yl Triflate (4e; Table 1, Entry 5)By following the general procedure, a mixture of CsF (46 mg, 0.30 mmol), 1-methyl-3-tosyl-2-imidazolidone (2b; 76 mg, 0.30 mmol), and 2-(tert-butyldimethylsilyl)-1,3-bis(trifluoromethanesulfonyloxy)benzene (1a; 50 mg, 0.10 mmol) was stirred in 1,4-dioxane (1.0 mL) for 40 min at 80 °C. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:2)] to give a colorless solid; yield: 33 mg (69%); mp 47–50 °C. IR (neat): 1697 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.44 (s, 3 H), 2.87 (s, 3 H), 3.36 (t, J = 5.5 Hz, 2 H), 4.11 (t, J = 5.5 Hz, 2 H), 6.84 (d, J = 8.0 Hz, 1 H), 6.96 (d, J = 8.0 Hz, 1 H), 7.33 (d, J = 8.5 Hz, 2 H), 7.42 (dd, J = 8.0, 8.0 Hz, 1 H), 7.97 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 40.5, 44.1, 58.6, 115.6, 118.4 (q, J = 319 Hz), 118.6, 122.7, 128.8, 129.3, 133.1, 135.3, 145.1, 147.3, 149.4, 164.3. 19F NMR (376 MHz, CDCl3): δ = –73.0. HRMS (MALDI): m/z [M + Na]+ calcd for C18H17F3N2NaO6S2: 501.0372; found: 501.0371. The regiochemistry of 4e was determined by NOE experiments.
  • 14 (3aR)-6-Oxo-5-tosyl-2,3,3a,4,5,6-hexahydro-1H-benzo[f]pyrrolo[1,2-a][1,4]diazepin-7-yl Triflate [(R)-4o; Table 3, Entry 1]By following the general procedure, a mixture of CsF (46 mg, 0.30 mmol), (R)-2-tosylhexahydro-3H-pyrrolo[1,2-c]imidazole-3-one [(R)-2k] (84 mg, 0.30 mmol), and 2-(tert-butyldimethylsilyl)-1,3-bis(trifluoromethanesulfonyloxy)benzene (1a; 50 mg, 0.10 mmol) in 1,4-dioxane (1.0 mL) was stirred for 40 min at 80 °C. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (2:3)] to give a yellow solid; yield: 35 mg (70%); mp 141–143 °C; [α]D 20 +5.5 (c 0.15, CHCl3). IR (neat): 1699, 1684 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.86–1.98 (m, 2 H), 2.05–2.16 (m, 2 H), 2.43 (s, 3 H), 3.24–3.35 (m, 2 H), 3.48–3.52 (m, 1 H), 4.07 (dd, J = 4.5, 16.0 Hz, 1 H), 4.24 (dd, J = 3.0, 16.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 H), 7.29–7.34 (m, 3 H), 7.95 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.6, 22.1, 29.5, 45.1, 48.9, 65.8, 112.6, 116.0, 117.3, 118.4 (q, J = 319 Hz), 129.1, 129.2, 132.7, 135.2, 145.0, 146.4, 148.6, 164.9. 19F NMR (376 MHz, CDCl3): δ = –73.1. HRMS (MALDI): m/z [M + Na]+ calcd for C20H19F3N2NaO6S2: 527.0529; found: 527.0519.The enantiomeric excess of the product (R)-4o was determined to be 88% by HPLC on CHIRALCEL AD-3 [hexane–i-PrOH (90:10), flowrate: 1.0 mL/min]; tR [(R)-isomer] = 30.0 min, tR [(S)-isomer] = 33.0 min. The absolute configuration was assigned on the basis of that of (R)-2k, synthesized from d-proline.