Synthesis 2018; 50(04): 772-777
DOI: 10.1055/s-0036-1591888
paper
© Georg Thieme Verlag Stuttgart · New York

Development of a Ratiometric Fluorescent Probe with Two ­Reactive Sulfoxides for Monitoring the Activity of Methionine Sulfoxide Reductase A

Nikolai Makukhin
Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12843 Prague 2, Czech Republic   Email: misek@natur.cuni.cz
,
Vladimír Nosek
Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12843 Prague 2, Czech Republic   Email: misek@natur.cuni.cz
,
Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12843 Prague 2, Czech Republic   Email: misek@natur.cuni.cz
› Author Affiliations
This research was supported by the Czech Science Foundation (Grantová Agentura České Republiky, GACR 17-25897Y).
Further Information

Publication History

Received: 05 December 2017

Accepted after revision: 15 December 2017

Publication Date:
18 January 2018 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

Biological oxidation of methionine side chains in proteins is a process that affects the functions of many proteins. One of the key regulators of this signaling is the enzyme methionine sulfoxide reductase A (MsrA). MsrA is implicated in a number of diseases, but detailed understanding of its function is hindered by the lack of tools for monitoring the enzyme’s activity. We have designed and synthesized a probe named (S,S)-Sulfox-2 that is based on a BODIPY fluorophore and is equipped with two chiral sulfoxide units of defined stereochemistry. (S,S)-Sulfox-2 is shown to be highly responsive to MsrA and allows tracing of the MsrA activity by a significant change in the fluorescence profile.

Supporting Information

 
  • References

  • 1 Antelmann H. Helmann JD. Antioxid. Redox Signaling 2011; 14: 1049
  • 2 Peskin AV. Winterbourn CC. Free Radical Biol. Med. 2001; 30: 572
  • 3 Pattison DI. Davies MJ. Chem. Res. Toxicol. 2001; 14: 1453
  • 4 Buxton GV. Greenstock CL. Helman WP. Ross AB. J. Phys. Chem. Ref. Data 1988; 17: 513
  • 5 Brot N. Weissbach L. Werth J. Weissbach H. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 2155
  • 6 Grimaud R. Ezraty B. Mitchell JK. Lafitte D. Briand C. Derrick PJ. Barras F. J. Biol. Chem. 2001; 276: 48915
  • 7 Achilli C. Ciana A. Minetti G. BioFactors 2015; 41: 135
  • 8 Davis DA. Newcomb FM. Moskovitz J. Wingfield PT. Stahl SJ. Kaufman J. Fales HM. Levine RL. Yarchoan R. Biochem. J. 2000; 346: 305
  • 9 Caldwell P. Luk DC. Weissbach H. Brot N. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 5349
  • 10 Johnson D. Travis J. J. Biol. Chem. 1979; 254: 4022
  • 11 Yin D. Kuczera K. Squier TC. Chem. Res. Toxicol. 2000; 13: 103
  • 12 Carruthers NJ. Stemmer PM. Biochemistry 2008; 47: 3085
  • 13 Kanayama A. Inoue J.-I. Sugita-Konishi Y. Shimizu M. Miyamoto Y. J. Biol. Chem. 2002; 277: 24049
  • 14 Drazic A. Miura H. Peschek J. Le Y. Bach NC. Kriehuber T. Winter J. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 9493
  • 15 Erickson JR. Joiner MA. Guan X. Kutschke W. Yang J. Oddis CV. Bartlett RK. Lowe JS. O’Donnell SE. Aykin-Burns N. Zimmerman MC. Zimmerman K. Ham A.-JL. Weiss RM. Spitz DR. Shea MA. Colbran RJ. Mohler PJ. Anderson ME. Cell 2008; 133: 462
  • 16 Hung R.-J. Pak CW. Terman JR. Science 2011; 334: 1710
  • 17 Makukhin N. Tretyachenko V. Moskovitz J. Míšek J. Angew. Chem. Int. Ed. 2016; 55: 12727
  • 18 Zhang L. Peng S. Sun J. Yao J. Kang J. Hu Y. Fang J. Chem. Sci. 2017; 8: 2966
  • 19 Tarrago L. Péterfi Z. Lee BC. Michel T. Gladyshev VN. Nat. Chem. Biol. 2015; 11: 332
  • 20 Leen V. Leemans T. Boens N. Dehaen W. Eur. J. Org. Chem. 2011; 4386
  • 21 Burghart A. Kim HJ. Welch MB. Thoresen LH. Reibenspies J. Burgess K. Bergstrom F. Johansson LB. A. J. Org. Chem. 1999; 64: 7813
  • 22 Thoresen LH. Kim HJ. Welch MB. Burghart A. Burgess K. Synlett 1998; 1276
  • 23 Tsien RY. Trends Neurosci. 1988; 11: 419
  • 24 Lee MH. Kim JS. Sessler JL. Chem. Soc. Rev. 2015; 44: 4185
  • 25 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
  • 26 Miller EG. Rayner DR. Thomas HT. Mislow K. J. Am. Chem. Soc. 1968; 90: 4861
  • 27 Guo Y. Jenks WS. J. Org. Chem. 1997; 62: 857
  • 28 Aurisicchio C. Baciocchi E. Gerini MF. Lanzalunga O. Org. Lett. 2007; 9: 1939
  • 29 Kočovský P. Vyskočil Š. Císařová I. Sejbal J. Tišlerová I. Smrčina M. Lloyd-Jones GC. Stephen SC. Butts CP. Murray M. Langer V. J. Am. Chem. Soc. 1999; 121: 7714
  • 30 Martin R. Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 31 Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
  • 32 Zhang N. Hoffman DJ. Gutsche N. Gupta J. Percec V. J. Org. Chem. 2012; 77: 5956
  • 33 Loudet A. Burgess K. Chem. Rev. 2007; 107: 4891
  • 34 Rohand T. Dolusic E. Ngo TH. Maes W. Dehaen W. ARKIVOC 2007; (x): 307
  • 35 Khan TK. Rao MR. Ravikanth M. Eur. J. Org. Chem. 2010; 2314