Synthesis 2018; 50(06): 1275-1283
DOI: 10.1055/s-0036-1591846
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Base-Controlled Diastereoselective Synthesis of Tetraarylethanes from 2-Benzylpyridines

Selvaraj Chandrasekar
Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India   Email: gsekar@iitm.ac.in
,
Iyyanar Karthikeyan
Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India   Email: gsekar@iitm.ac.in
,
Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India   Email: gsekar@iitm.ac.in
› Author Affiliations
We thank DST (project No: SB/S1/OC-72/2013) and DST nano mission [SR/NM/NS-1034/2012(G)] for financial support. SCS thanks UGC, New Delhi for a research fellowship.
Further Information

Publication History

Received: 25 May 2017

Accepted after revision: 07 November 2017

Publication Date:
11 December 2017 (online)


Dedicated to Prof. M. Periyasamy on the occasion of his 65th birthday.

Abstract

A highly efficient and base-controlled diastereoselective synthesis of tetraarylethanes through copper-catalyzed dehydrogenative homocoupling of readily available 2-benzylpyridines is reported. Various dl- and meso-tetraarylethanes were diastereoseletively synthesized by this new protocol, where base plays the role of the principle modulator: Grignard reagents selectively provide the C2 isomers, whereas KOt-Bu promotes the formation of the meso-tetraarylethanes. Interestingly, the presence of excess KOt-Bu generates the (E)-tetraarylethenes as the only product.

Supporting Information

Primary Data

 
  • References

    • 1a Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1b Wencel-Delord J. Droege T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1c Kozhushkov SI. Ackermann L. Chem. Sci. 2013; 4: 886
    • 1d Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 1e Zhang S.-Y. Zhang F.-M. Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 1f Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 1g Hu F. Szostak M. ChemCatChem 2015; 7: 1061
    • 1h Mo J. Wang L. Liu Y. Cui X. Synthesis 2015; 47: 439
    • 2a Fan S. Chen Z. Zhang X. Org. Lett. 2012; 14: 4950
    • 2b Mao Z. Wang Z. Xu Z. Huang F. Yu Z. Wang R. Org. Lett. 2012; 14: 3854
    • 2c Chen X. Cui X. Yang F. Wu Y. Org. Lett. 2015; 17: 1445
    • 2d Yamada S. Murakami K. Itami K. Org. Lett. 2016; 18: 2415
    • 2e Xie Z. Liu X. Liu L. Org. Lett. 2016; 18: 2982
    • 3a Peng X. Ma C. Tung C.-H. Xu Z. Org. Lett. 2016; 18: 4154
    • 3b Lei S. Mai Y. Yan C. Mao J. Cao H. Org. Lett. 2016; 18: 3582
    • 4a Bugaut X. Glorius F. Angew. Chem. Int. Ed. 2011; 50: 7479
    • 4b Xi P. Yang F. Qin S. Zhao D. Lan J. Gao G. Hu C. You J. J. Am. Chem. Soc. 2010; 132: 1822
    • 4c Wang Z. Li K. Zhao D. Lan J. You J. Angew. Chem. Int. Ed. 2011; 50: 5365
    • 4d Gong X. Song G. Zhang H. Li X. Org. Lett. 2011; 13: 1766
    • 4e Yamaguchi AD. Mandal D. Yamaguchi J. Itami K. Chem. Lett. 2011; 40: 555
    • 4f Han W. Mayer P. Ofial AR. Angew. Chem. Int. Ed. 2011; 50: 2178
    • 4g Dong J. Huang Y. Qin X. Cheng Y. Hao J. Wan D. Li W. Liu X. You J. Chem. Eur. J. 2012; 18: 6158

      For selected examples, see:
    • 5a Chen X. Hao X.-S. Goodhue CE. Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 5b Li Z. Li C.-J. J. Am. Chem. Soc. 2006; 128: 56
    • 5c Do H.-Q. Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
    • 5d Do H.-Q. Khan RM. K. Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
    • 5e Brasche G. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 5f Ueda S. Nagasawa H. Angew. Chem. Int. Ed. 2008; 47: 6411
    • 5g Phipps RJ. Grimster NP. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 5h Ban I. Sudo T. Taniguchi T. Itami K. Org. Lett. 2008; 10: 3607
    • 5i Kawano T. Yoshizumi T. Hirano K. Satoh T. Miura M. Org. Lett. 2009; 11: 3072
    • 5j Bernini R. Fabrizi G. Sferrazza A. Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
    • 5k Jia Y.-X. Kundig EP. Angew. Chem. Int. Ed. 2009; 48: 1636
    • 5l Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
    • 5m Do H.-Q. Daugulis O. J. Am. Chem. Soc. 2011; 133: 13577
    • 5n Hachiya H. Hirano K. Satoh T. Miura M. Org. Lett. 2011; 13: 3076
    • 6a Lv W. Liu J. Lu D. Flockhart DA. Cushman M. J. Med. Chem. 2013; 56: 4611
    • 6b Khurana JM. Chauhan S. Maikap GC. Org. Biomol. Chem. 2003; 1: 1737
    • 6c Habibi MH. Farhadi S. Tetrahedron Lett. 1999; 40: 2821
    • 6d Li Y. Izumi T. Synth. Commun. 2003; 33: 3583
    • 6e Schloegl K. Weissensteiner W. Synthesis 1982; 50
    • 6f Yamada Y. Momose D. Chem. Lett. 1981; 1277
    • 6g Wakui H. Kawasaki S. Satoh T. Miura M. Nomura M. J. Am. Chem. Soc. 2004; 126: 8658
    • 6h Canty AJ. Minchin NJ. Inorg. Chim. Acta 1985; 100: L13
    • 6i Canty AJ. Minchin NJ. Aust. J. Chem. 1986; 39: 1063
    • 6j Skatteboel L. Boulette B. J. Organomet. Chem. 1970; 24: 547
    • 6k Newkome GR. Roper JM. J. Org. Chem. 1979; 44: 502
  • 7 Kauffmann T. Kuhlmann D. Sahm W. Schrecken H. Angew. Chem., Int. Ed. Engl. 1968; 7: 541
    • 9a Mamillapalli NC. Sekar G. Chem. Eur. J. 2015; 21: 18584
    • 9b Sangeetha S. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 6006
    • 9c Sharma N. Kotha SS. Lahiri N. Sekar G. Synthesis 2015; 47: 726
    • 9d Alamsetti SK. Poonguzhali E. Ganapathy D. Sekar G. Adv. Synth. Catal. 2013; 355: 2803
    • 9e Prasad DJ. C. Sekar G. Org. Biomol. Chem. 2013; 11: 1659
    • 9f Thakur KG. Srinivas KS. Chiranjeevi K. Sekar G. Green Chem. 2011; 13: 2326
  • 10 With 4 equiv of o-TolMgBr, 4a was obtained in 18%.
  • 11 CCDC 1486840 (2g), 1486841 (3a), and 1486842 (4a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic­ Data Centre via www.ccdc.cam.ac.uk/getstructures­.