Synthesis 2018; 50(05): 1090-1096
DOI: 10.1055/s-0036-1591843
paper
© Georg Thieme Verlag Stuttgart · New York

Potassium Carbonate Promoted C–N Coupling Reaction between Benzamides and Aryl Iodides

Fei Huang
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Email: zhangsl@suda.edu.cn
,
San Wu
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Email: zhangsl@suda.edu.cn
,
Weiye Hu
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Email: zhangsl@suda.edu.cn
,
Songlin Zhang*
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, P. R. of China   Email: zhangsl@suda.edu.cn
› Author Affiliations
We would like to gratefully acknowledge financial support from the A Project Funded by the Priority Academic Program for the Development of Jiangsu Higher Education Institutions and the National Natural Science Foundation of China (No. 21072143).
Further Information

Publication History

Received: 01 September 2017

Accepted after revision: 03 November 2017

Publication Date:
23 November 2017 (online)


Abstract

A practical and efficient method for N-arylation of benz­amides promoted by potassium carbonate in the presence of DMEDA was developed. The reaction was carried out without addition of any transition-metal catalyst to afford a variety of N-arylated products in moderate to good yields (up to 97%).

Supporting Information

 
  • References

    • 1a Zhao Z. Wisnoski DD. O’Brien JA. Lemaire WD. L. Williams JR. Jacobson MA. Wittman M. Ha SN. Schaffhauser H. Sur C. Bioorg. Med. Chem. Lett. 2007; 17: 1386
    • 1b Heinrich MC. Corless CL. Demetri GD. Blanke CD. von Mehren M. Joensuu H. McGreevey LS. Chen C.-J. Van den Abbeele AD. Druker B. Kiese B. Eisenberg B. Roberts PJ. Singer S. Fletcher CD. Silberman S. Dimitrijevic S. Fletcher JA. J. Clin. Oncol. 2003; 21: 4342
    • 1c Harrison DC. Winkle R. Sami M. Mason J. Am. Heart. J. 1980; 100: 1046
    • 2a Ullmann F. Bielecki J. Ber. Dtsch. Chem. Ges. 1901; 34: 2174
    • 2b Ullmann F. Sponagel PB. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
    • 2c Guram AS. Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
    • 2d Klapars A. Antilla JC. Huang XH. Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7729
    • 2e Klapars A. Huang XH. Buchwald SL. J. Am. Chem. Soc. 2002; 124: 7421
  • 3 Yin JJ. Buchwald SL. J. Am. Chem. Soc. 2002; 124: 6043
    • 4a Correa A. Elmore S. Bolm C. Chem. Eur. J. 2008; 14: 3527
    • 4b Buchwald SL. Bolm C. Angew. Chem. Int. Ed. 2009; 48: 5586
    • 4c Swapna K. Kumar AV. Reddy VP. Rao KR. J. Org. Chem. 2009; 74: 7514
  • 5 Das R. Mandal M. Chakraborty D. Asian J. Org. Chem. 2013; 2: 579
  • 6 Tan BY. Teo YC. Org. Biomol. Chem. 2014; 12: 7478
    • 7a Burnett JF. Zahler RE. Chem. Rev. 1951; 49: 273
    • 7b Buncel E. Dust JM. Terrier F. Chem. Rev. 1995; 95: 2261
    • 7c Bowman WR. Storey JM. D. Chem. Soc. Rev. 2007; 36: 1803
    • 7d Sun CL. Shi ZJ. Chem. Rev. 2014; 114: 9219
    • 7e Yanagisawa S. Ueda K. Taniguchi T. Itami K. Org. Lett. 2008; 10: 4673
    • 7f Sun C.-L. Li H. Yu DG. Yu M. Zhou X. Lu XY. Huang K. Zheng SF. Li BJ. Shi ZJ. Nat. Chem. 2010; 2: 1044
    • 7g Shirakawa E. Zhang X. Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 4671
    • 8a Yuan Y. Thomé I. Kim SH. Chen DT. Beyer A. Bonnamour J. Zuidema E. Chang S. Bolm C. Adv. Synth. Catal. 2010; 352: 2892
    • 8b Cano R. Ramón DJ. Yus M. J. Org. Chem. 2011; 76: 654
    • 8c Tatsuo I. Miki M. Norio M. J. Org. Chem. 1995; 60: 7508
    • 8d Liu W. Cao H. Zhang H. Chung KH. He C. Wang H. Kwong FY. Lei AW. J. Am. Chem. Soc. 2010; 132: 16737
    • 8e Shirakawa E. Itoh K. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 8f Huang P. He BY. Wang HM. Lu JM. Synthesis 2015; 47: 221
    • 8g Yang S. Wu C. Ruan M. Yang Y. Zhao Y. Niu J. Yang W. Xu J. Tetrahedron Lett. 2012; 53: 4288
    • 9a Thomé I. Nijs A. Bolm C. Chem. Soc. Rev. 2012; 41: 979
    • 9b Arvela RK. Leadbeater NE. Sangi MS. Williams VA. Granados P. Singer RD. J. Org. Chem. 2005; 70: 161
    • 9c Ouali A. Majoral JP. Caminade AM. Taillefer M. ChemCatChem 2009; 1: 504
    • 9d Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang HB. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 10 Wagner P. Bollenbach M. Doebelin C. Bihel F. Bourguignon J.-J. Salomé C. Schmitt M. Green Chem. 2014; 16: 4170
  • 11 Cheng C. Sun G. Wan J. Sun C. Synlett 2009; 2663
  • 12 Mieko A. Masahiko Y. Org. Lett. 2001; 3: 311
  • 13 Zhang G. Zhao X. Yan Y. Ding C. Eur. J. Org. Chem. 2012; 669
  • 14 Liley MJ. Johnson T. Gibson SE. J. Org. Chem. 2006; 71: 1322
  • 15 Teo YC. Yong FF. Ithnin IK. Yio S.-HT. Lin Z. Eur. J. Org. Chem. 2013; 515
  • 16 Ghotas E. Robert AB. J. Org. Chem. 2006; 71: 1802
  • 17 Satoshi U. Hideko N. J. Org. Chem. 2009; 74: 4272
  • 18 Crawford SM. Lavery CB. Stradiotto M. Chem. Eur. J. 2013; 19: 16760
  • 19 Barbero N. Carril M. SanMartin R. Domínguez E. Tetrahedron 2007; 63: 10425
  • 20 Vigorita MG. Saporito G. Previtera T. Pizzimenti FC. Bisignano G. Farmaco Ed. Sci. 1986; 41: 168
  • 21 Wang Y. Zhu D. Tang L. Wang S. Wang Z. Angew. Chem. Int. Ed. 2011; 50: 8917
  • 22 Lee CK. Yu JK. Ji YR. J. Heterocycl. Chem. 2002; 39: 1219
  • 23 Park YT. Jung CH. Kim MS. Kim KW. Song NW. Kim D. J. Org Chem. 2001; 66: 2197
  • 24 Jozwiak A. Brzezinski JZ. Plotka MW. Szczesniak AK. Malinowski Z. Epsztajn J. Eur. J. Org. Chem. 2004; 3254
  • 25 Manfroni G. Meschini F. Costantino F. Tabarrini O. Cecchetti V. ARKIVOC 2011; (ix): 165