Synlett 2018; 29(10): 1324-1328
DOI: 10.1055/s-0036-1591837
letter
© Georg Thieme Verlag Stuttgart · New York

Green Photoorganocatalytic Synthesis of Phenols from Arylboronic Acids

Ioanna K. Sideri
Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Errika Voutyritsa
Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
,
Christoforos G. Kokotos*
Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   Email: ckokotos@chem.uoa.gr
› Author Affiliations
The authors gratefully acknowledge the Latsis Foundation for financial support through the program ‘EPISTHMONIKES MELETES 2015’ (PhotoOrganocatalysis: Development of new environmentally-friendly methods for the synthesis of compounds for the pharmaceutical and chemical industry) and the Laboratory of Organic Chemistry of the Department of Chemistry of the National and Kapodistrian University of Athens. E.V. would like to thank the National Scholarship Foundation (IKY) for financial support through a doctoral fellowship.
Further Information

Publication History

Received: 04 September 2017

Accepted after revision: 01 November 2017

Publication Date:
24 November 2017 (online)


Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop

Abstract

A green and cheap protocol for the photocatalytic hydroxylation of arylboronic acids is presented. 2,2-Dimethoxy-2-phenylacetophenone proved to be the best photoinitiator, among a range of organocatalysts in promoting this reaction. This photocatalytic protocol can be expanded into a wide substrate scope of aromatic boronic acids bearing various functional groups, leading to the corresponding phenols in good to high yields under mild reaction conditions, which include water as solvent, light irradiation provided from standard light-bulbs at room temperature.

Supporting Information

 
  • References and Notes

    • 1a Tyman JH. P. Synthetic and Natural Phenols . Elsevier; New York: 1996
    • 1b Rappoport Z. The Chemistry of Phenols . Wiley-VCH; Weinheim: 2003
    • 2a Kormos CM. Leadbeater NE. Tetrahedron 2006; 62: 4728
    • 2b Tlili A. Xia N. Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 8725
    • 2c Zhao DB. Wu NJ. Zhang S. Angew. Chem. Int. Ed. 2009; 48: 8729
    • 2d Yang DS. Fu H. Chem. Eur. J. 2010; 16: 2366
    • 3a George T. Mabon R. Sweeney G. Sweeney JB. Tavassoli AJ. J. Chem. Soc., Perkin Trans. 1 2000; 2529
    • 3b Hanson P. Jones JR. Taylor AB. Walton PH. Timms AW. J. Chem. Soc., Perkin Trans. 2 2002; 1135
    • 3c Hoarau C. Pettus TR. R. Synlett 2003; 127
    • 4a Benjamin R. Travis BR. Ciaramitaro BP. Borhan B. Eur. J. Org. Chem. 2002; 3429
    • 4b Maleczka RE. Shi F. Holmes D. Smith III MR. J. Am. Chem. Soc. 2003; 125: 7792
    • 4c Prakash GK. S. Chacko S. Panja C. Thomas TE. Gurung L. Rasul G. Mathew T. Olah GA. Adv. Synth. Catal. 2009; 351: 1567
  • 5 Simon J. Salzbrunn S. Prakash GK. S. Petasis NA. Olah GA. J. Org. Chem. 2001; 66: 633
  • 6 Webb KS. Levy D. Tetrahedron Lett. 1995; 36: 5117
  • 7 Zhu C. Wang R. Falck JR. Org. Lett. 2012; 14: 3494
  • 8 Chen D.-S. Huang J.-M. Synlett 2013; 24: 499
  • 9 Kianmehr E. Yahyaee M. Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
  • 10 Guo S. Lu L. Cai H. Synlett 2013; 24: 1712
  • 11 Bommegowda YK. Mallesha N. Vinayaka AC. Sadashiva MP. Chem. Lett. 2016; 45: 268
  • 12 Cheng G. Zeng X. Cui X. Synthesis 2014; 46: 295
  • 13 Gogoi P. Bezboruah P. Gogoi J. Boruah RC. Eur. J. Org. Chem. 2013; 7291
    • 14a Ruso JS. Rajendiran N. Kumaran RS. Tetrahedron Lett. 2014; 55: 2345
    • 14b Chatterjee N. Chowdhury H. Sneh K. Goswami A. Tetrahedron Lett. 2015; 56: 172
    • 14c Paul A. Chatterjee D. Rajkamal Halder T. Banerjee S. Yadav S. Tetrahedron Lett. 2015; 56: 2496
    • 15a Xu J. Wang X. Shao C. Su D. Cheng G. Hu Y. Org. Lett. 2010; 12: 1964
    • 15b Yang H. Li Y. Jiang M. Wang J. Fu H. Chem. Eur. J. 2011; 17: 5652
    • 15c Inamoto K. Nozawa K. Yonemoto M. Kondo Y. Chem. Commun. 2011; 47: 11775
    • 15d Dar BA. Bhatti P. Singh AP. Lazar A. Sharma PR. Sharma M. Singh B. Appl. Catal., A 2013; 466: 60
    • 15e Yang D. An B. Wei W. Jiang M. You J. Wang H. Tetrahedron 2014; 70: 3630
    • 15f Affrose A. Azath IA. Dhakshinamoorthy A. Pitchumani K. J. Mol. Catal. A: Chem. 2014; 395: 500
    • 16a Zheng J. Lin S. Zhu X. Jiang B. Yang Z. Pan Z. Chem. Commun. 2012; 48: 6235
    • 16b Wang L. Zhang W. Su DS. Meng X. Xiao F.-S. Chem. Commun. 2012; 48: 5476
  • 17 Begum T. Gogoi A. Gogoi PK. Bora U. Tetrahedron Lett. 2015; 56: 95
  • 18 Chowdhury AD. Mobin SM. Mukherjee S. Bhaduri S. Lahiri GK. Eur. J. Inorg. Chem. 2011; 3232
  • 19 Gogoi N. Gogoi PK. Borah G. Bora U. Tetrahedron Lett. 2016; 57: 4050
    • 20a Hosoi K. Kuriyama Y. Inagi S. Fuchigami T. Chem. Commun. 2010; 46: 1284
    • 20b Jiang H. Lykke L. Pedersen SU. Xiao W.-J. Jørgensen KA. Chem. Commun. 2012; 48: 7203
    • 20c Qi H.-L. Chen D.-S. Ye J.-S. Huang J.-M. J. Org. Chem. 2013; 78: 7482
    • 21a Cammidge AN. Goddard VH. M. Schubert CP. J. Gopee H. Hughes DL. Gonzalez-Lucas D. Org. Lett. 2011; 13: 6034
    • 21b Kotoučová H. Strnadová I. Kovandová M. Chudoba J. Dvořáková H. Cibulka R. Org. Biomol. Chem. 2014; 12: 2137
    • 22a Zou Y.-Q. Chen J.-R. Liu X.-P. Lu L.-Q. Davis RL. Jørgensen KA. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
    • 22b Yu X. Cohe SM. Chem. Commun. 2015; 51: 9880
    • 22c Toyao T. Ueno N. Miyahara K. Matsui Y. Kim T.-H. Horiuchi Y. Ikeda H. Matsuoka M. Chem. Commun. 2015; 51: 16103
    • 22d Zhang M.-J. Li H.-X. Li H.-Y. Lang J.-P. Dalton Trans. 2016; 45: 17759
  • 23 Pitre SP. McTiernan CD. Ismaili H. Scaiano JC. J. Am Chem. Soc. 2013; 135: 13286
  • 24 Xie H.-Y. Han L.-S. Huang S. Lei X. Cheng Y. Zhao W. Sun H. Wen X. Xu Q.-L. J. Org. Chem. 2017; 82: 5236
    • 25a Papadopoulos GN. Limnios D. Kokotos CG. Chem. Eur. J. 2014; 20: 13811
    • 25b Papadopoulos GN. Kokotos CG. Chem. Eur. J. 2016; 22: 6964
    • 25c Papadopoulos GN. Kokotos CG. J. Org. Chem. 2016; 81: 7023
    • 25d Limnios D. Kokotos CG. Adv. Synth. Catal. 2017; 359: 323
    • 25e Koutoulogenis GS. Kokotou MG. Voutyritsa E. Limnios D. Kokotos CG. Org. Lett. 2017; 19: 1760
  • 26 General Procedure for the Photoorganocatalytic Hydroxylation of Arylboronic Acids The boronic acid (0.60 mmol) was placed in a glass vial and dissolved in water (1.0 mL), followed by 2,2-dimethoxy-2-phenyl­acetophenone (30.0 mg, 0.12 mmol). DIPEA (580 mg, 4.50 mmol) was then added. The reaction mixture was left open to the atmosphere with stirring at room temperature under standard light-bulb irradiation (2 × 80 W household lamps) for 72 h. The reaction mixture was quenched with HCl (1 M, 20 mL) and then extracted with Et2O (20 mL). The organic layer was washed with brine (20 mL) and dried over Na2SO4. After filtration and removal of the solvent in vacuo, the crude product was purified by flash column chromatography (10% EtOAc/PE) to afford the pure product.
  • 27 4-Fluorophenol (2a) White solid; mp 43–45 °C; 57% yield (19 mg, 0.17 mmol). 1H NMR (200 MHz, CDCl3): δ = 6.97–6.85 (2 H, m, ArH), 6.84–6.72 (2 H, m, ArH), 5.85 (1 H, br s, OH). 13C NMR (50 MHz, CDCl3): δ = 157.3 (d, J = 237.9 Hz), 151.0 (d, J = 2.1 Hz), 116.3 (d, J = 8.1 Hz), 116.0 (d, J = 23.0). 19F NMR (188 MHz, CDCl3): δ = -81.7. 3-Methylphenol (2e) Colorless oil; 83% yield (27 mg, 0.25 mmol). 1H NMR (200 MHz, CDCl3): δ = 7.18 (1 H, t, J = 8.2 Hz, ArH), 6.82 (1 H, d, J = 8.2 Hz, ArH), 6.76–6.67 (2 H, m, ArH), 6.02 (1 H, br s, OH), 2.34 (3 H, s, CH3). 13C NMR (50 MHz, CDCl3): δ = 155.0, 139.2, 129.4, 121.7, 116.1, 112.3, 21.2.