Synlett 2018; 29(13): 1796-1800
DOI: 10.1055/s-0036-1591585
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Fused Purine Heterocycles via a One-pot Cascade Reaction of a Trisubstituted Pyrimidine

Bo Liu ‡
a   National Institutes for Food and Drug Control, Beijing 100050, P. R. of China   Email: liubo3236364@163.com
,
Yaling Gong ‡
b   State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, No. 1 Xiannongtan Street, Beijing 100050, P. R. of China
,
Shichao Lu
b   State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, No. 1 Xiannongtan Street, Beijing 100050, P. R. of China
,
Dandan Li
b   State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, No. 1 Xiannongtan Street, Beijing 100050, P. R. of China
,
Huihong Fan*
a   National Institutes for Food and Drug Control, Beijing 100050, P. R. of China   Email: liubo3236364@163.com
› Author Affiliations
The research was financially supported by National Science and ­Technology Major Project ‘Key New Drug Creation and Manufacturing Program’ (2015ZX09303001), National Natural Science Foundation of China (21602256).
Further Information

Publication History

Received: 01 February 2018

Accepted after revision: 22 April 2018

Publication Date:
23 May 2018 (online)


These authors contributed equally.

Abstract

A rapid and expedient one-pot procedure for the synthesis of fused purine derivatives from a trisubstituted pyrimidine and various amines has been developed. The tandem substitution reaction and copper(I)-catalyzed annulation exhibited high efficiency. The fused heterocyclic products contain the purine scaffold and may be useful in medicinal chemistry and bioscience.

Supporting Information

 
  • References and Notes

    • 1a Akhtar W. Khan MF. Verma G. Shaquiquzzaman M. Rizvi MA. Mehdi SH. Akhter M. Alam MM. Eur. J. Med. Chem. 2017; 126: 705
    • 1b Cahill MM. O’Shea KD. Pierce LT. Winfield HJ. Eccles KS. Lawrence SE. McCarthy FO. Pharmaceuticals (Basel) 2017; 10 DOI: 10.3390/ph10030062.
    • 1c Chen Q. Davidson A. Bioorg. Med. Chem. Lett. 2017; 27: 4436
    • 1d Chhabria MT. Patel S. Modi P. Brahmkshatriya PS. Curr. Top. Med. Chem. 2016; 16: 2841
    • 1e El-Gamal MI. Anbar HS. Expert Opinion on Therapeutic Patents 2017; 27: 591
    • 1f Muylaert K. Jatczak M. Mangelinckx S. Stevens CV. Curr. Med. Chem. 2016; 23: 4784
    • 1g Raffa D. Maggio B. Raimondi MV. Cascioferro S. Plescia F. Cancemi G. Daidone G. Eur. J. Med. Chem. 2015; 97: 732
    • 1h Son KJ. Choi KR. Ryu CK. Lee SJ. Kim HJ. Lee H. PLoS One 2017; e0173121
    • 1i Belmont P. Alarcon K. Demeunynck M. Lhomme J. Bioorg. Med. Chem. Lett. 1999; 9: 233
    • 1j Kaur R. Kaur P. Sharma S. Singh G. Mehndiratta S. Bedi PM. Nepali K. Recent Pat. Anticancer Drug Discov. 2015; 10: 23
    • 1k Tariq S. Somakala K. Amir M. Eur. J. Med. Chem. 2018; 143: 542
    • 1l Wang L. Tian Y. Chen W. Liu H. Zhan P. Li D. Liu H. De Clercq E. Pannecouque C. Liu X. Eur. J. Med. Chem. 2014; 85: 293
    • 1m Yang D. An B. Wei W. Tian L. Huang B. Wang H. ACS Comb. Sci. 2015; 17: 113
    • 1n Zhan P. Liu X. De Clercq E. Curr. Med. Chem. 2008; 15: 1529
    • 1o Goodfellow VS. Loweth CJ. Ravula SB. Wiemann T. Nguyen T. Xu Y. Todd DE. Sheppard D. Pollack S. Polesskaya O. Marker DF. Dewhurst S. Gelbard HA. J. Med. Chem. 2013; 56: 8032
    • 1p Xie M. Lapidus RG. Sadowska M. Edelman MJ. Hosmane RS. Bioorg. Med. Chem. 2016; 24: 2595
    • 1q Cahill MM. O’Shea KD. Pierce LT. Winfield HJ. Eccles KS. Lawrence SE. McCarthy FO. Pharmaceuticals (Basel) 2017; 10: 62
    • 2a Bannwitz S. Krane D. Vortherms S. Kalin T. Lindenschmidt C. Golpayegani NZ. Tentrop J. Prinz H. Muller K. J. Med. Chem. 2014; 57: 6226
    • 2b Cherukupalli S. Hampannavar GA. Chinnam S. Chandrasekaran B. Sayyad N. Kayamba F. Aleti RR. Karpoormath R. Bioorg. Med. Chem. 2018; 26: 309
    • 3a Iaroshenko VO. Ostrovskyi D. Miliutina M. Maalik A. Villinger A. Tolmachev A. Volochnyuk DM. Langer P. Adv. Synth. Catal. 2012; 354: 2495
    • 3b Meng G. Niu HY. Qu GR. Fossey JS. Li JP. Guo HM. Chem. Commun. (Camb.) 2012; 48: 9601
    • 4a Chu JJ. Hu BL. Liao ZY. Zhang XG. J. Org. Chem. 2016; 81: 8647
    • 4b Jin SJ. Guo JM. Zhu YS. Wang QL. Org. Biomol. Chem. 2017; 15: 8729
    • 4c Meng Q. Chen F. Yu W. Org. Lett. 2017; 19: 5186
    • 4d Oh KH. Kim SM. Park SY. Park JK. Org. Lett. 2016; 18: 2204
    • 4e Pang X. Wu M. Ni J. Zhang F. Lan J. Chen B. Org. Lett. 2017; 82: 10110
    • 4f Shin S. Son JY. Choi C. Kim S. Lee PH. J. Org. Chem. 2016; 81: 11706
    • 4g Sueda T. Okamoto N. Yanada R. J. Org. Chem. 2016; 81: 5745
    • 4h Thapa S. Basnet P. Giri R. J. Org. Chem. 2017; 139: 5700
    • 4i Tiwari AR. Bhanage BM. Org. Biomol. Chem. 2016; 14: 7920
    • 4j Wen LR. Dou Q. Wang YC. Zhang JW. Guo WS. Li M. J. Org. Chem. 2017; 82: 1428
    • 4k Yang JC. Zhang JJ. Guo LN. J. Org. Chem. 2016; 14: 9806
    • 4l Zhang H. Li W. Zhu C. J. Am. Chem. Soc. 2017; 82: 2199
    • 4m Zhao Y. Li Z. Sharma UK. Sharma N. Song G. Van der Eycken EV. Chem. Commun. (Camb.) 2016; 52: 6395
    • 4n Dong ZB. Liu X. Bolm C. Org. Lett. 2017; 19: 5916
    • 4o Guo XX. Gu DW. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 4p Kavala V. Yang Z. Konala A. Huang CY. Kuo CW. Yao CF. J. Org. Chem. 2017; 82: 7280
    • 4q Li SS. Li WH. Zhang GT. Xia YQ. Liu CF. Su F. Zhang XM. Dong L. Org. Biomol. Chem. 2016; 14: 7859
    • 4r Wang W. Wei F. Ma Y. Tung CH. Xu Z. Org. Lett. 2016; 18: 4158
    • 4s Xie C. Han X. Gong J. Li D. Ma C. J. Org. Chem. 2017; 15: 5811
    • 4t Yugandar S. Konda S. Ila H. Org. Biomol. Chem. 2017; 19: 1512
    • 4u Jin SJ. Guo JM. Zhu YS. Wang QL. Bu ZW. Org. Biomol. Chem. 2017; 15: 8729
  • 6 Wehbe M. Lo C. Leung AW. Y. Dragowska WH. Ryan GM. Bally MB. Invest. New Drugs 2017; 35: 682
  • 8 Lv X. Bao W. J. Org. Chem. 2007; 72: 3863
  • 9 Thakur KG. Sekar G. Chem. Commun. (Camb.) 2011; 47: 6692
  • 10 Gao X. Wu B. Yan Z. Zhou YG. Org. Biomol. Chem. 2016; 14: 8237
  • 11 Cao Q. Peng HY. Cheng Y. Dong ZB. Synthesis 2018; 50: 1527
    • 12a Clarke LA. Ring A. Ford A. Sinha AS. Lawrence SE. Maguire AR. Org. Biomol. Chem. 2014; 12: 7612
    • 12b Kim HY. Takizawa S. Oh K. Org. Biomol. Chem. 2016; 14: 7191
    • 12c Liu Y. Park SK. Xiao Y. Chae J. Org. Biomol. Chem. 2014; 12: 4747
    • 12d Sadhu P. Alla SK. Punniyamurthy T. J. Org. Chem. 2015; 80: 8245
    • 12e Teng Q. Hu J. Ling L. Sun R. Dong J. Chen S. Zhang H. Org. Biomol. Chem. 2014; 12: 7721
  • 13 General Procedure for the Synthesis of 4a–q: K2CO3 (221.1 mg, 1.6 mmol) was added to a solution of 2-(((5-bromo-2-­chloropyrimidin-4-yl)amino)methyl)benzonitrile (1; 257.6 mg, 0.8 mmol) and the amine (2an, 0.88 mmol) in DMSO (20 mL) in a 50 mL round-bottom flask at 120 °C. The mixture was stirred for 6–8 h under an argon atmosphere. The complete consumption of benzonitrile 1 was determined by TLC. CuI (30.5 mg, 0.16 mmol) and l-proline (L3, 36.8 mg, 0.32 mmol) were added and the reaction mixture was stirred for another 8 h at 80 °C. After the reaction was complete, the mixture was diluted with saturated ammonium chloride solution (40 mL) and extracted with CH2Cl2 (3 × 30 mL). The combined organic layer was washed with saturated NaCl, the organic solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (EtOAc/n-hexanes) to afford the corresponding product.
  • 14 Characterization Data of representative compounds: Compound 4a: Yield: 86%; yellow amorphous solid; mp 198–200 °C; 1H NMR (300 MHz, CDCl3): δ = 8.62 (s, 1 H), 8.04 (m, 1 H), 7.57–7.59 (m, 3 H), 7.30–7.42 (m, 5 H), 6.35 (br. s, 1 H), 5.07 (s, 2 H), 4.75 (d, J = 5.7 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 159.44, 157.23, 153.37, 144.46, 143.76, 138.49, 132.41, 131.11, 129.26, 128.68, 127.74, 127.55, 127.43, 124.35, 122.71, 77.37, 77.05, 76.74, 46.61, 29.73. HRMS (ESI): m/z [M+H]+ calcd for C19H16N5: 314.1397; found: 314.1398. Compound 4d: Yield: 91%; yellow amorphous solid; mp 191–193 °C; 1H NMR (400 MHz, CDCl3): δ = 8.70 (m, 1 H), 8.01 (m, 1 H), 7.51–7.70 (3 H), 5.02 (s, 2 H), 3.63 (m, 4 H), 1.65 (m, 4 H), 1.25–1.42 (12 H), 0.90 (m, 6 H). 13C NMR (101 MHz, CDCl3): δ = 158.50, 152.42, 143.67, 131.07, 130.98, 130.26, 128.94, 128.87, 128.83, 124.15, 122.15, 48.33, 46.29, 31.77, 27.71, 26.74, 22.69, 14.14. HRMS (ESI): m/z [M+H]+ calcd for C24H34N5: 392.1836; found: 392.1839. Compound 4p: Yield: 78%; yellow amorphous solid; mp 202–204 °C; 1H NMR (400 MHz, CDCl3): δ = 8.90 (s, 1 H), 8.12–8.14 (m, 1 H), 7.61–7.68 (m, 3 H), 5.18 (s, 2 H), 4.14 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.61, 155.05, 148.98, 143.83, 142.10, 130.93, 129.17, 124.34, 122.63, 55.34, 46.74. HRMS (ESI): m/z [M+H]+ calcd for C13H11N4O: 239.0921; found: 239.0922.