Synlett 2018; 29(05): 668-672
DOI: 10.1055/s-0036-1591525
letter
© Georg Thieme Verlag Stuttgart · New York

Substoichiometric FeCl3 Activation of Propargyl Glycosides for the Synthesis of Disaccharides and Glycoconjugates

Guosheng Sun
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Yue Wu
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Anqi Liu
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Saifeng Qiu
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Wan Zhang
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Zhongfu Wang
b   School of Life Sciences, Northwest University, Xi’an, 710069, P. R. of China
,
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
› Author Affiliations
This project was financially supported by Natural Science Foundation of Shanghai (11ZR1410400), Shanghai college student innovative training program (201510269085) and large instruments Open Foundation of East China Normal University (20151043 & 20162015).
Further Information

Publication History

Received: 05 October 2017

Accepted after revision: 03 December 2017

Publication Date:
03 January 2018 (online)


Abstract

Glycosides as glycosyl donors using FeCl3 have been described. Under optimal reaction conditions, three kinds of propargyl glycosides were found to react with steroids and sugar-derived glycosyl acceptors to afford the corresponding disaccharides and glycoconjugates in good to excellent yields (66–91%). Meanwhile, the method can also realize one-pot synthesis of disaccharides, making it an effective, affordable, and green glycosylation procedure.

Supporting Information

 
  • References and Notes

  • 1 Chiasson JL. Josse RG. Gomis R. Hanefeld M. Karasik A. Laakso M. Group S.-NT. R. Lancet 2002; 359: 2072
  • 2 He BC. Gao JL. Luo X. Luo J. Shen J. Wang L. Zhou Q. Wang YT. Luu HH. Haydon RC. Wang CZ. Du W. Yuan CS. He TC. Zhang BQ. Int. J. Oncol. 2011; 38: 437
  • 3 Mona MH. Omran NE. Mansoor MA. El-Fakharany ZM. Pharm. Biol. 2012; 50: 1144
  • 4 Hamai S. J. Nanosci. Nanotechnol. 2001; 1: 177
  • 5 Toole BP. Ghatak S. Misra S. Curr. Pharm. Biotechnol. 2008; 9: 249
  • 6 Johnson MA. Cartmell J. Weisser NE. Woods RJ. Bundle DR. J. Biol. Chem. 2012; 287: 18078
  • 7 Tsvetkov YE. Burg-Roderfeld M. Loers G. Arda A. Sukhova EV. Khatuntseva EA. Grachev AA. Chizhov AO. Siebert HC. Schachner M. Jimenez-Barbero J. Nifantiev NE. J. Am. Chem. Soc. 2012; 134: 426
  • 8 Koeller KM. Wong CH. Chem. Rev. 2000; 100: 4465
  • 9 Ragupathi G. Koide F. Livingston PO. Cho YS. Endo A. Wan Q. Spassova MK. Keding SJ. Allen J. Ouerfelli O. Wilson RM. Danishefsky SJ. J. Am. Chem. Soc. 2006; 128: 2715
  • 10 Plante OJ. Palmacci ER. Seeberger PH. Adv. Carbohydr. Chem. Biochem. 2003; 58: 35
  • 11 Li X. Zhu J. J. Carbohydr. Chem. 2012; 31: 284
  • 12 McKay MJ. Nguyen HM. ACS Catal. 2012; 2: 15 63
  • 13 Li X. Zhu J. Eur. J. Org. Chem. 2016; 2016: 4724
  • 14 Zhu Y. Yu B. Angew. Chem. Int. Ed. 2011; 50: 8329
  • 15 Adhikari S. Li X. Zhu J. J. Carbohydr. Chem. 2013; 32: 336
  • 16 Dutta S. Sarkar S. Gupta SJ. Sen AK. Tetrahedron Lett. 2013; 54: 865
  • 17 Chen X. Shen D. Wang Q. Yang Y. Yu B. Chem. Commun. 2015; 51: 13957
  • 18 Hotha S. Kashyap S. J. Am. Chem. Soc. 2006; 128: 9620
  • 19 Imagawa H. Kinoshita A. Fukuyama T. Yamamoto H. Nishizawa M. Tetrahedron Lett. 2006; 47: 4729
  • 20 Sureshkumar G. Hotha S. Chem. Commun. 2008; 36: 4282
  • 21 Mamidyala SK. Finn MG. J. Org. Chem. 2009; 74: 8417
  • 22 Vidadala SR. Thadke SA. Hotha S. J. Org. Chem. 2009; 74: 9233
  • 23 Vidadala SR. Hotha S. Chem. Commun. 2009; 18: 2505
  • 24 Kayastha AK. Hotha S. Tetrahedron Lett. 2010; 51, 40: 5269
  • 25 Kayastha AK. Hotha S. Chem. Commun. 2012; 48: 7161
  • 26 Vidadala SR. Thadke SA. Hotha S. Kashyap S. J. Carbohydr. Chem. 2012; 31: 241
  • 27 Thadke SA. Neralkar M. Hotha S. Carbohydr. Res. 2016; 430: 16
  • 28 Sureshkumar G. Hotha S. Tetrahedron Lett. 2007; 48: 6564
  • 29 Li J. Zhang X. Zhang M. Xiu H. He H. Carbohydr. Polym. 2015; 117: 917
  • 30 Zhang L. Yu H. Wang P. Li Y. Bioresour. Technol. 2014; 151: 355
  • 31 Zhou J. Chen H. Shan J. Li J. Yang G. Chen X. Xin K. Zhang J. Tang J. J. Carbohydr. Chem. 2014; 33: 313
  • 32 Cornil J. Guerinot A. Reymond S. Cossy J. J. Org. Chem. 2013; 78: 10273
  • 33 Shiva Kumar K. Siddi Ramulu M. Rajesham B. Kumar NP. Voora V. Kancha RK. Org. Biomol. Chem. 2017; 15: 4468
  • 34 Shi JL. Zhang JC. Wang BQ. Hu P. Zhao KQ. Shi ZJ. Org. Lett. 2016; 18: 1238
  • 35 Zhao J. Xu Z. Oniwa K. Asao N. Yamamoto Y. Jin T. Angew. Chem. Int. Ed. 2016; 55: 259
  • 36 Ma L. Li W. Xi H. Bai X. Ma E. Yan X. Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410
  • 37 Jang SS. Youn SW. Org. Biomol. Chem. 2016; 14: 2200
  • 38 Zhu Y. Li C. Zhang J. She M. Sun W. Wan K. Wang Y. Yin B. Liu P. Li J. Org. Lett. 2015; 17: 3872
  • 39 Ruengsangtongkul S. Taprasert P. Sirion U. Jaratjaroonphong J. Org. Biomol. Chem. 2016; 14: 8493
  • 40 Qiu S. Zhang W. Sun G. Wang Z. Zhang J. ChemistrySelect 2016; 1: 4840
  • 41 Qiu S. Sun G. Ding Z. Chen H. Zhang J. Synlett 2017; 28: 2024
  • 42 Garcia BA. Gin DY. J. Am. Chem. Soc. 2000; 122: 4269
  • 43 Mensah EA. Azzarelli JM. Nguyen HM. J. Org. Chem. 2009; 74: 1650
  • 44 Uchiro H. Kurusu N. Mukaiyama T. Isr. J. Chem. 1997; 37: 87
  • 45 Senthilkumar S. Prasad SS. Kumar PS. Baskaran S. Chem. Commun. 2014; 50: 1549
  • 46 Tatina M. Yousuf SK. Mukherjee D. Org. Biomol. Chem. 2012; 10: 5357
  • 47 Rajaganesh R. MohanDas T. Carbohydr. Res. 2012; 357: 139
  • 48 Ashokkumar V. Siva A. Org. Biomol. Chem. 2017; 15: 2551
  • 49 Liu W. Zheng Y. Kong X. Heinis C. Zhao Y. Wu C. Angew. Chem. Int. Ed. 2017; 56: 4458
  • 50 Dash AK. Madhubabu T. Yousuf SK. Raina S. Mukherjee D. Carbohyd. Res. 2017; 438: 1
  • 51 Bellucci MC. Ghilardi A. Volonterio A. Org. Biomol. Chem. 2011; 9: 8379
  • 52 Mitachi K. Mohan P. Siricilla S. Kurosu M. Chemistry 2014; 20: 4554
  • 53 Venukumar P. Sudharani C. Sridhar PR. Chem. Commun. 2014; 50: 2218
  • 54 Yadav JS. Yadav NN. Gupta MK. Srivastava N. Subba Reddy BV. Monatsh. Chem. 2014; 145: 517
  • 55 Typical Experimental Procedure Typically, to a mixture of 2,3,4,6-tetra-O-benzyl-α-d-glucopyranoside (1a, 0.1 mmol, 58 mg) and methyl 2,3,4-tri-O-benzoyl-α-d-glucopyranoside (2a, 0.05 mmol, 25 mg) in a round-bottom flask (5 mL) under nitrogen atmosphere. The FeCl3 (10 mg, 0.06 mmol) catalyst and anhydrous CH3CN solvent (6 mL) was added to another round-bottom flask. Take the solution of FeCl3(1.5 mL) to the former round-bottom flask, and the reaction was stirred at 60 °C for 15 h. After completion of the reaction (monitored by TLC), the organic phase was condensed under vacuum to get crude product, which was purified by silica gel column chromatography (PE/EtOAc = 6:1) to get 3a in 83% yield. All new compounds were characterized by 1H NMR,13C NMR, and MS. Spectral and analytical data were in good agreement with the desired structures.
  • 56 Selected Spectral Data – Compound 3a Colorless oil, α-anomer:1H NMR (500 MHz, CDCl3): δ = 8.00 (dd, J = 8.3, 1.2 Hz, 2 H), 7.97 (dd, J = 8.3, 1.2 Hz, 2 H), 7.91–7.85 (m, 2 H), 7.55–7.49 (m, 2 H), 7.46–7.28 (m, 24 H), 7.22 (m, 1 H), 7.15 (dd, J = 7.6, 1.7 Hz, 2 H), 6.16 (t, J = 9.4 Hz, 1 H), 5.55 (t, J = 9.9 Hz, 1 H), 5.24 (q, J = 3.5 Hz, 2 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.84 (d, J = 11.0 Hz, 1 H), 4.80 (d, J = 11.0 Hz, 1 H), 4.78 (d, J = 12.5 Hz, 1 H), 4.76 (d, J = 3.5 Hz, 1 H), 4.65 (d, J = 12.2 Hz, 1 H), 4.56 (d, J = 12.1 Hz, 1 H), 4.47 (d, J = 11.0 Hz, 1 H), 4.40 (d, J = 12.1 Hz, 1 H), 4.36–4.31 (m, 1 H), 3.98 (t, J = 9.3 Hz, 1 H), 3.90–3.84 (m, 2 H), 3.67–3.62 (m, 2 H), 3.60 (dd, J = 11.0, 2.1 Hz, 1 H), 3.56 (dd, J = 9.7, 3.5 Hz, 1 H), 3.52 (dd, J = 10.7, 1.9 Hz, 1 H), 3.46 (s, 3 H). β-Anomer: 1H NMR (500 MHz, CDCl3): δ = 8.00–7.85 (m, 6 H), 7.52–7.12 (m, 29 H), 6.17 (t, J =9.8 Hz, 1 H), 5.47 (t, J =9.9 Hz, 1 H), 5.25 (dd, J =10.2, 3.6 Hz, 1 H), 5.20 (d, J =3.6 Hz, 1 H), 5.05 (d, J =10.8 Hz, 1 H), 4.91 (d, J =10.9 Hz, 1 H), 4.80 (d, J =10.8 Hz, 1 H), 4.76 (d, J = 10.9 Hz, 1 H), 4.68 (d, J =10.9 Hz, 1 H), 4.53 (d, J =11.5 Hz, 1 H), 4.50 (d, J =11.6 Hz, 1 H), 4.47 (d, J =7.8 Hz, 1 H), 4.43 (d, J =12.2 Hz, 1 H), 4.41–4.34 (m, 1 H), 4.12 (dd, J =10.8, 2.0 Hz, 1 H), 3.81 (dd, J = 10.9, 7.6 Hz, 1 H), 3.66–3.63 (m, 2 H), 3.61 (d, J = 6.0 Hz, 1 H), 3.58 (d, J = 9.1 Hz, 1 H), 3.46–3.43 (m, 2 H), 3.37 (s, 3 H). ESI-MS: m/z calcd for C62H60O14 Na [M + Na+]: 1051.39; found: 1051.25.