Synlett 2017; 28(14): 1715-1718
DOI: 10.1055/s-0036-1591209
cluster
© Georg Thieme Verlag Stuttgart · New York

Concise Synthesis of Lamellarin Alkaloids by C–H/N–H Activation: Evaluation of Metal Catalysts in Oxidative Alkyne Annulation

Ruhuai Mei
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de   URL: http://www.ackermann.chemie.uni-goettingen.de
,
Shou-Kun Zhang
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de   URL: http://www.ackermann.chemie.uni-goettingen.de
,
Lutz Ackermann*
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammanstraße 2, 37077 Göttingen, Germany   Email: Lutz.Ackermann@chemie.uni-goettingen.de   URL: http://www.ackermann.chemie.uni-goettingen.de
› Author Affiliations
Generous support by the European Research Council under the European Community’s Seventh Framework Program (FP7 2007–2013)/ERC Grant agreement no. 307535, and the China Scholarship Council (fellowships to R.M. and S.-K.Z.) is gratefully acknowledged.
Further Information

Publication History

Received: 02 July 2017

Accepted: 03 August 2017

Publication Date:
16 August 2017 (online)


§ These authors contributed equally

Published as part of the ISHC Conference Special Section

Abstract

The performance of various transition-metal catalysts was explored in the step-economical synthesis of naturally occurring lamellarin alkaloids by C–H/N–H activation. The oxidative alkyne annulation proceeded efficiently by using sustainable ruthenium(II) catalysis, which set the stage for a concise synthesis of lamellarin D, lamellarin H and derivatives thereof.

Supporting Information

 
  • References and Notes

    • 1a Newton CG. Wang S.-G. Oliveira CC. Cramer N. Chem. Rev. 2017; 117: 8908
    • 1b Wang F. Yu S. Li X. Chem. Soc. Rev. 2017; 45: 6462
    • 1c Borie C. Ackermann L. Nechab M. Chem. Soc. Rev. 2016; 45: 1368
    • 1d Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 1e Della Ca’ N. Fontana M. Motti E. Catellani M. Acc. Chem. Res. 2016; 49: 1389
    • 1f Shin K. Kim H. Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 1g Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 1h Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 1i Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1j Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 1k Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 1l Zhang Y.-H. Shi B.-F. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
    • 1m Kulkarni AA. Daugulis O. Synthesis 2009; 4087
  • 2 Grenier F. Goudreau K. Leclerc M. J. Am. Chem. Soc. 2017; 139: 2816
    • 3a Seki M. Org. Process Res. Dev. 2016; 20: 867
    • 3b Ackermann L. Org. Process Res. Dev. 2015; 19: 260
    • 4a Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 4b McMurray L. O’Hara F. Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 5a Ruiz S. Villuendas P. Urriolabeitia EP. Tetrahedron Lett. 2016; 57: 3413
    • 5b Sarkar SD. Liu W. Kozhushkov SI. Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 5c Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
    • 5d Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 5e Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 5f Ackermann L. Vicente R. Top. Curr. Chem. 2010; 292: 211
    • 6a Ackermann L. Lygin AV. Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
    • 6b Ackermann L. Lygin AV. Hofmann N. Org. Lett. 2011; 13: 3278
  • 7 Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 8a Li B. Wang N. Liang Y. Xu S. Wang B. Org. Lett. 2013; 15: 136
    • 8b Wang L. Ackermann L. Org. Lett. 2012; 15: 176
    • 9a Warratz S. Kornhaaß C. Cajaraville A. Niepötter B. Stalke D. Ackermann L. Angew. Chem. Int. Ed. 2015; 54: 5513
    • 9b Ackermann L. Wang L. Lygin AV. Chem. Sci. 2012; 3: 177
    • 9c Li J. John M. Ackermann L. Chem. Eur. J. 2014; 20: 5403
    • 10a Ballot C. Martoriati A. Jendoubi M. Buche S. Formstecher P. Mortier L. Kluza J. Marchetti P. Mar. Drugs 2014; 12: 779
    • 10b Ballot C. Kluza J. Lancel S. Martoriati A. Hassoun SM. Mortier L. Vienne J.-C. Briand G. Formstecher P. Bailly C. Apoptosis 2010; 15: 769
    • 10c Gallego M. Ballot C. Kluza J. Hajji N. Martoriati A. Castera L. Cuevas C. Formstecher P. Joseph B. Kroemer G. Oncogene 2008; 27: 1981
    • 10d Baunbæk D. Trinkler N. Ferandin Y. Lozach O. Ploypradith P. Rucirawat S. Ishibashi F. Iwao M. Meijer L. Mar. Drugs 2008; 6: 514
    • 10e Facompré M. Tardy C. Bal-Mahieu C. Colson P. Perez C. Manzanares I. Cuevas C. Bailly C. Cancer Res. 2003; 63: 7392
  • 11 Andersen RJ. Faulkner DJ. He CH. Van Duyne GD. Clardy J. J. Am. Chem. Soc. 1985; 107: 5492
    • 12a Imbri D. Tauber J. Opatz T. Mar. Drugs 2014; 12: 6142
    • 12b Pla D. Albericio F. Álvarez M. MedChemComm 2011; 2: 689
    • 12c Pla D. Albericio F. Alvarez M. Anti-Cancer Agents Med. Chem. 2008; 8: 746
    • 12d Fan H. Peng J. Hamann MT. Hu J.-F. Chem. Rev. 2008; 108: 264
    • 12e Pla Queral D. Marchal A. Olsen CA. Francesch A. Cuevas C. Albericio Palomera F. Álvarez Domingo M. J. Med. Chem. 2006; 49: 3257

      For lamellarin syntheses, see:
    • 13a Manjappa KB. Syu J.-R. Yang D.-Y. Org. Lett. 2016; 18: 332
    • 13b Dialer C. Imbri D. Hansen SP. Opatz T. J. Org. Chem. 2015; 80: 11605
    • 13c Ueda K. Amaike KR. Maceiczyk M. Itami K. Yamaguchi J. J. Am. Chem. Soc. 2014; 136: 13226
    • 13d Komatsubara M. Umeki T. Fukuda T. Iwao M. J. Org. Chem. 2013; 79: 529
    • 13e Jiang Q. Li J. Fan A. Cui Y. Jia Y. Org. Lett. 2010; 13: 312
    • 13f Ploypradith P. Petchmanee T. Sahakitpichan P. Litvinas ND. Ruchirawat S. J. Org. Chem. 2006; 71: 9440
    • 13g Fujikawa N. Ohta T. Yamaguchi T. Fukuda T. Ishibashi F. Iwao M. Tetrahedron 2006; 62: 594
    • 13h Pla D. Marchal A. Olsen CA. Albericio F. Álvarez M. J. Org. Chem. 2005; 70: 823
    • 13i Boger DL. Boyce CW. Labroli MA. Sehon CA. Jin Q. J. Am. Chem. Soc. 1999; 121: 54
    • 13j Banwell M. Hockless D. Chem. Commun. 1997; 2259
    • 13k Peschko C. Winklhofer C. Steglich W. Chem. Eur. J. 2000; 6: 1147
    • 13l Heim A. Terpin A. Steglich W. Angew. Chem. Int. Ed. Engl. 1997; 36: 155
  • 14 Lade DM. Pawar AB. Mainkar PS. Chandrasekhar S. J. Org. Chem. 2017; 82: 4998
    • 15a Stuart DR. Alsabeh P. Kuhn M. Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
    • 15b Rakshit S. Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 15c Hoshino Y. Shibata Y. Tanaka K. Adv. Synth. Catal. 2014; 356: 1577
    • 16a Zhao M.-N. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2014; 16: 608
    • 16b Xu Y.-H. He T. Zhang Q.-C. Loh T.-P. Chem. Commun. 2014; 50: 2784
    • 17a Yu W. Zhang W. Liu Y. Zhou Y. Liu Z. Zhang Y. RSC Adv. 2016; 6: 24768
    • 17b Lade DM. Pawar AB. Org. Chem. Front. 2016; 3: 836
  • 18 For detailed information see the Supporting Information

    • For selected reviews, see:
    • 19a Yoshino T. Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 19b Wei D. Zhu X. Niu J.-L. Song M.-P. ChemCatChem 2016; 8: 1242
    • 19c Moselage M. Li J. Ackermann L. ACS Catal. 2016; 6: 498
    • 20a Yedage SL. Bhanage BM. Green Chem. 2016; 18: 5635
    • 20b Zhao H. Zhang T. Yan T. Cai M. J. Org. Chem. 2015; 80: 8849
    • 20c Ackermann L. Vicente R. Org. Lett. 2009; 11: 4922