Synlett 2017; 28(20): 2765-2768
DOI: 10.1055/s-0036-1590857
letter
© Georg Thieme Verlag Stuttgart · New York

Lithiation–Substitution of N-Boc-2-phenylazepane

Tahani Aeyad
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK   Email: i.coldham@sheffield.ac.uk
,
Jason D. Williams
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK   Email: i.coldham@sheffield.ac.uk
,
Anthony J. H. M. Meijer
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK   Email: i.coldham@sheffield.ac.uk
,
Iain Coldham*
Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK   Email: i.coldham@sheffield.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 31 May 2017

Accepted: 06 July 2017

Publication Date:
17 August 2017 (online)


Dedicated to Victor Snieckus on the occasion of his 80th birthday

Abstract

Preparation of 2,2-disubstituted azepanes was accomplished from N-tert-butoxy(N-Boc)-2-phenylazepane by treatment with butyllithium then electrophilic quench. The lithiation was followed by in situ ReactIR spectroscopy and the rate of rotation of the carbamate was determined by variable temperature (VT)-NMR spectroscopy and by DFT studies. Most electrophiles add α to the nitrogen atom but cyanoformates and chloroformates gave ortho-substituted products. Cyclic carbamates were formed from an aldehyde or ketone electrophile. Kinetic resolution with sparteine was only poorly selective. Removal of the Boc group promoted cyclization to a homoindolizidine or an isoindolinone.

Supporting Information

 
  • References and Notes


    • See, for example:
    • 1a Murphy MB. Murray C. Shorten GD. New Engl. J. Med. 2001; 345: 1548
    • 1b Stote RM. Dubb JW. Familiar RG. Erb BB. Alexander F. Clin. Pharmacol. Ther. 1983; 34: 309
  • 2 See, for example: Chen J. Xie Y. Chen J. Zhang H. Tetrahedron 2015; 71: 3747; and references therein
    • 3a Sheikh NS. Leonori D. Barker G. Firth JD. Campos KR. Meijer AJ. H. M. O’Brien P. Coldham I. J. Am. Chem. Soc. 2012; 134: 5300
    • 3b Cochrane EJ. Leonori D. Hassall LA. Coldham I. Chem. Commun. 2014; 50: 9910
    • 4a Li X. Leonori D. Sheikh NS. Coldham I. Chem. Eur. J. 2013; 19: 7724
    • 4b Li X. Coldham I. J. Am. Chem. Soc. 2014; 136: 5551
    • 4c Talk RA. Duperray A. Li X. Coldham I. Org. Biomol. Chem. 2016; 14: 4908
  • 5 Cochrane EJ. Hassall LA. Coldham I. J. Org. Chem. 2015; 80: 5964
  • 6 Madan S. Milano P. Eddings DB. Gawley RE. J. Org. Chem. 2005; 70: 3066

    • For alternative syntheses of compound 3, see:
    • 7a Chen F. Ding Z. Qin J. Wang T. He Y. Fan Q.-H. Org. Lett. 2011; 13: 4348
    • 7b Coldham I. Leonori D. Org. Lett. 2008; 10: 3923
    • 8a Gallagher DJ. Beak P. J. Org. Chem. 1995; 60: 7092
    • 8b Bertini Gross KM. Beak P. J. Am. Chem. Soc. 2001; 123: 315
  • 9 Typical Conditions n-BuLi (0.19 mL, 0.45 mmol, 2.4 M in hexanes) was added to the azepane 3 (100 mg, 0.36 mmol) in dry THF (2 mL) at –5 °C under nitrogen. After 10 min, the electrophile (1.09 mmol) was added, and the mixture was allowed to warm to r.t. After 18 h, MeOH (1 mL) was added. The solvent was evaporated and the residue was purified by column chromatography, eluting with PE–EtOAc, see Supporting Information.

    • For competitive α- and ortho lithiation of N-alkylarylaziridines and other small-ring heterocycles, see:
    • 10a Affortunato F. Florio S. Luisi R. Musio B. J. Org. Chem. 2008; 73: 9214
    • 10b Capriati V. Florio S. Luisi R. Eur. J. Org. Chem. 2014; 5397

      For kinetic resolutions with BuLi/sparteine, see ref. 3b and:
    • 11a Faibish NC. Park YS. Lee S. Beak P. J. Am. Chem. Soc. 1997; 119: 11561
    • 11b Kessar SV. Singh P. Singh KN. Venugopalan P. Kaur A. Bharatam PV. Sharma AK. J. Am. Chem. Soc. 2007; 129: 4506
    • 11c Becker J. Fröhlich R. Salorinne K. Hoppe D. Eur. J. Org. Chem. 2007; 3337
    • 11d Granander J. Secci F. O'Brien P. Kelly B. Tetrahedron: Asymmetry 2009; 20: 2432
    • 11e Doulcet J. Stephenson GR. Chem. Eur. J. 2015; 21: 18677