Synthesis 2017; 49(11): 2470-2482
DOI: 10.1055/s-0036-1590112
paper
© Georg Thieme Verlag Stuttgart · New York

Tethered NHC Ligands for Stereoselective Alkyne Semihydrogenations

Felix Pape
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: johannes.teichert@chem.tu-berlin.de
,
Johannes F. Teichert*
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: johannes.teichert@chem.tu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 04 January 2017

Accepted after revision: 09 February 2017

Publication Date:
17 February 2017 (online)


Abstract

A copper(I)-catalyzed semihydrogenation of internal alkynes has been developed. A variety of oxygen- and nitrogen-tethered N-heterocyclic carbene (NHC) complexes have been investigated, leading to a highly Z-selective transformation. The catalyst is generated from inexpensive copper(I) chloride in situ and allows catalytic semihydrogenation down to 10 bar H2.

Supporting Information

 
  • References

    • 1a Noyori R. Chem. Commun. 2005; 1807-1807
    • 1b Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411-411
    • 1c Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301-301
  • 2 Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318-8318
  • 3 Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916-2916
  • 4 Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498-498
  • 5 Lipshutz BH. In Modern Organocopper Chemistry . Krause N. Wiley-VCH; Weinheim: 2002: 167-187

    • For early studies on H2 activation with copper(I) hydride compounds, see:
    • 6a Mahoney WS, Stryker JM. J. Am. Chem. Soc. 1989; 111: 8818-8818
    • 6b Chen JX, Daeuble JF, Brestensky DM, Stryker JF. Tetrahedron 2000; 56: 2153-2153
    • 6c Chen JX, Daeuble JF, Stryker JM. Tetrahedron 2000; 56: 2789-2789

      For copper(I)-catalyzed carbonyl hydrogenation, see:
    • 7a Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655-1655
    • 7b Shimizu H, Sayo N, Saito T. Synlett 2009; 1295-1295
    • 7c Shimizu H, Nagano T, Sayo N, Saito T, Ohshima T, Mashima K. Synlett 2009; 3143-3143
    • 7d Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem. Eur. J. 2011; 17: 101-101
    • 7e Krabbe SW, Hatcher MA, Bowman RK, Mitchell MB, McClure MS, Johnson JS. Org. Lett. 2013; 15: 4560-4560
    • 7f Watari R, Kayaki Y, Hirano S.-i, Matsumoto N, Ikariya T. Adv. Synth. Catal. 2015; 357: 1369-1369
  • 8 For a review on the related alkyne semihydrogeation with hetereogeneous palladium catalysts, see: Molnar A, Sarkany A, Varga M. J. Mol. Catal. A: Chem. 2001; 173: 185-185
  • 9 Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318-318
  • 10 Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934-15934
  • 11 Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354-1354
  • 12 Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660-10660
  • 13 For a report on copper(I)-catalyzed alkyne semihydrogenation employing hypophosphorous acid as stroichiometric reductant, see: Cao H, Chen T, Zhou Y, Han D, Yin S.-F, Han L.-B. Adv. Synth. Catal. 2014; 356: 765-765

    • For formal alkyne semihydrogenations with stoichiometric copper hydride complexes, see:
    • 14a Daeuble JF, McGettigan C, Stryker JM. Tetrahedron Lett. 1990; 31: 2397-2397

    • For formal alkyne semihydrogenations with hydrosilanes and proton sources, see:
    • 14b Semba K, Fujihara T, Xu T, Terao J, Tsuji Y. Adv. Synth. Catal. 2012; 354: 1542-1542
    • 14c Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112-1112
    • 14d Cox N, Dang H, Whittaker AM, Lalic G. Tetrahedron 2014; 70: 4219-4219
    • 14e Wang G.-H, Bin H.-Y, Sun M, Chen S.-W, Liu J.-H, Zhong C.-M. Tetrahedron 2014; 70: 2175-2175

    • For a report on stereoselective alkyne semihydrogenation with copper nanoparticles, see:
    • 14f Fedorov A, Liu H.-J, Lo H.-K, Copéret C. J. Am. Chem. Soc. 2016; 138: 16502-16502
  • 15 For alkyne transfer semihydrogenation with copper(I) catalysts, see: Korytiaková E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 26-26
  • 16 Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354-7354
    • 17a Tsuda T, Yazawa T, Watanabe K, Fujii T, Saegusa T. J. Org. Chem. 1981; 46: 192-192

    • For a review on mesitylcopper(I), see:
    • 17b Stollenz M, Meyer F. Organometallics 2012; 31: 7708-7708
  • 18 For further optimization data and control reactions regarding the role of the NHC ligand, see the Supporting Information.
    • 19a Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A. J. Am. Chem. Soc. 2006; 128: 8416-8416
    • 19b Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A. Chem. Eur. J. 2010; 16: 9890-9890
    • 19c Jahier-Diallo C, Morin MS. T, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M. Chem. Eur. J. 2015; 21: 993-993
  • 20 Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237-5237
  • 21 For an early study on homogeneous hydrogenation with copper(II) acetate in quinoline as solvent (implying a crucial Cu–N bond), see: Calvin M, Polanyi M. Trans. Faraday Soc. 1938; 34: 1181-1181
    • 22a For a recent study of copper(I)–triazole complexes in hydrosilane activation, see: Trose M, Lazreg F, Chang T, Nahra F, Cordes DB, Slawin AM. Z, Cazin CS. J. ACS Catal. 2016; 6: 238-238
    • 22b Of the complexes described in reference 22a, [Cu(μ-trz)NHC]2 with NHC = IPr, IMes and SIMes, did not show any alkyne semihydrogenation of tolane (4) and 6-dodecyne (10k) in THF at 100 bar H2 and 60 °C.
  • 23 Goj LA, Blue ED, Delp SA, Gunnoe TB, Cundari TR, Pierpoint AW, Petersen JL, Boyle PD. Inorg. Chem. 2006; 45: 9032-9032
  • 24 CCDC 1523593 contains the supplementary crystallographic data for 5t. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 25 A similar rearrangement has been reported: Despagnet-Ayoub E, Henling LM, Labinger JA, Bercaw JE. Organometallics 2013; 32: 2934-2934
    • 26a Jordan AJ, Wyss CM, Bacsa J, Sadighi JP. Organometallics 2016; 35: 613-613
    • 26b Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369-3369
  • 27 So far, mechanistic investigations by NMR spectroscopy and mass spectrometry have not delivered any conclusive evidence of reactive intermediates involved in the catalysis. These measurements have been partly hampered by the relatively high H2 pressures needed.
  • 28 Waltman AW, Grubbs RH. Organometallics 2004; 23: 3105-3105
  • 29 Arnold PL, Casely IJ, Turner ZR, Carmichael CD. Chem. Eur. J. 2008; 14: 10415-10415
  • 30 Paczal A, Benyei AC, Kotschy A. J. Org. Chem. 2006; 71: 5969-5969
  • 31 Lohre C, Droge T, Wang C, Glorius F. Chem. Eur. J. 2011; 17: 6052-6052
  • 33 Bonnat M, Hercouet A, Le Corre M. Synth. Commun. 1991; 21: 1579-1579
  • 34 Dubowchik GM, Han X, Vrudhula VM, Zuev D, Dasgupta B, Michne JA. Patent WO02058704 (A1), 2002
  • 35 van den Branden S, Compernolle F, Hoornaert GJ. J. Chem. Soc., Perkin Trans. 1 1992; 1035-1035
  • 36 Bessel M, Rominger F, Straub B. Synthesis 2010; 1459-1459
  • 37 Lal AK, Milton MD. Tetrahedron Lett. 2014; 55: 1810-1810
  • 38 Fu R, Yang Y, Ma Y, Yang F, Li J, Chai W, Wang Q, Yuan R. Tetrahedron Lett. 2015; 56: 4527-4527
  • 39 Peng X, Zhu Y, Ramirez TA, Zhao B, Shi Y. Org. Lett. 2011; 13: 5244-5244
  • 40 Jones RC, Nichols JR. Tetrahedron 2013; 69: 4114-4114
  • 41 Clavier H, Guillemin J.-C, Mauduit M. Chirality 2007; 19: 471-471
  • 42 Uenishi J, Aburatani S, Takami T. J. Org. Chem. 2007; 72: 132-132
  • 43 Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179-4179