Synthesis 2017; 49(23): 5183-5196
DOI: 10.1055/s-0036-1589090
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Glycosyl Azides and Their Applications Using CuAAC Click Chemistry to Generate Bis- and Tris(triazolyl)glycosyl Derivatives

Anwar Shamim
a   Instituto de Química, Av. Prof. Lineu Prestes, 748,05508-000, Universidade de São Paulo, São Paulo – SP, Brasil
,
Stanley N. S. Vasconcelos
b   Faculdade de Ciências Farmacêuticas, Av. Prof. Lineu Prestes, 580, 05508-00, Universidade de São Paulo, São Paulo – SP, Brasil   Email: hstefani@usp.br
,
Isadora Maria de Oliveira
a   Instituto de Química, Av. Prof. Lineu Prestes, 748,05508-000, Universidade de São Paulo, São Paulo – SP, Brasil
,
Joel S. Reis
b   Faculdade de Ciências Farmacêuticas, Av. Prof. Lineu Prestes, 580, 05508-00, Universidade de São Paulo, São Paulo – SP, Brasil   Email: hstefani@usp.br
,
Daniel C. Pimenta
c   Instituto Butantã, São Paulo – SP, Brasil
,
Julio Zukerman-Schpector
d   Departamento de Química, Universidade Federal de São Carlos, São Carlos –SP, Brasil
,
Hélio A. Stefani*
b   Faculdade de Ciências Farmacêuticas, Av. Prof. Lineu Prestes, 580, 05508-00, Universidade de São Paulo, São Paulo – SP, Brasil   Email: hstefani@usp.br
› Author Affiliations
The authors are grateful for the financial support provided by FAPESP - São Paulo Research Foundation (FAPESP) (Grant 2012/00424-2), CAPES (to A.S.) and CNPq – the National Council for Scientific and Technological Development (306119/2014-5 to H.A.S.).
Further Information

Publication History

Received: 24 May 2017

Accepted after revision: 11 July 2017

Publication Date:
10 August 2017 (online)


Abstract

2,3-Unsaturated C-(triazolyl)glycosyl acetates have been synthesized from 3,4,6-tri-O-acetyl-d-glucal using C-glycosylation and click chemistry and were then used in a palladium-catalyzed Tsuji–Trost type allylic azidation reaction to afford the corresponding regioisomeric glucal-azide derivatives. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with these glucal-based allylic azides using CuI as the catalyst, led to the corresponding glucal-based bis(triazole) derivatives. Performing further functional group modification and another click (CuAAC) reaction with each of these bis(triazolyl) glycosyl derivatives afforded tris(triazolyl)glycosyl derivatives. Two libraries of regioisomeric bis(triazole) derivatives and a small library of regioisomeric tris(triazole) derivatives of glucal were then synthesized using different alkynes.

Supporting Information

 
  • References

    • 1a Reusser FJ. J. Antibiot. 1979; 32: 1186
    • 1b Arcamone F. Penco S. Vigevani A. Redaelli S. Franchi G. DiMarco A. Casazza AM. Dasdia T. Formelli F. Necco A. Soranzo C. J. Med. Chem. 1975; 18: 703
  • 2 Kirschning A. Bechtold AF.-W. Rohr J. Top. Curr. Chem. 1997; 188: 2
  • 3 Chen X. Zheng Y. Shen Y. Curr. Med. Chem. 2006; 13: 109
    • 4a Iwai Y. Tanaka H. Oiwa R. Shimizu S. Omura S. Biochim. Biophys. Acta 1977; 498: 223
    • 4b Kuhn H. Gutelius D. Black E. Nadolny C. Basu A. Reid C. Med. Chem. Commun. 2014; 5: 1213
    • 4c Anand N. Jaiswal N. Pandey SK. Srivastava AK. Tripathi RP. Carbohydr. Res. 2011; 346: 16
    • 4d Assis SP. O. Silva MT. Oliveira RN. Lima VL. M. Sci. World J. 2012; 1
    • 5a Perion R. Ferrieres V. Garcıa-Moreno MI. Mellet CO. Duval R. Fernandez JM. G. Plusquellec D. Tetrahedron 2005; 61: 9118
    • 5b Tiwari VK. Mishra BB. Mishra KB. Mishra N. Singh AS. Chen X. Chem. Rev. 2016; 116: 3086
    • 5c Delsoa SG.-V. Tejero IP. M. T. Synthesis 2016; 48: 3339
    • 5d Nicolas C. Engo-Ilanga F. Cocaud C. Martin OR. Synlett 2015; 26: 187
    • 5e Yi H. Maisonneuve S. Xie J. Synthesis 2012; 44: 1647
    • 6a Quan X.-J. Ren Z.-H. Wang Y.-Y. Guan Z.-H. Org. Lett. 2014; 16: 5728
    • 6b Barluenga J. Valdes C. Beltran G. Escribano M. Aznar F. Angew. Chem. Int. Ed. 2006; 45: 6893
    • 6c Cai Z.-J. Lu X.-M. Zi Y. Yang C. Shen L.-J. Li J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 5108
    • 7a Hein CD. Liu X.-M. Wan D. Pharm. Res. 2008; 25: 2216
    • 7b Dedol S. Nepogodieva SA. Field RA. Org. Biomol. Chem. 2007; 5: 1006
    • 7c Meldal M. Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 7d Hein JE. Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 7e Vranken T. Redeker ES. Miszta A. Billen B. Hermens W. Laat BD. Adriaensens P. Guedens W. Cleij TJ. Sens. Actuators B: Chem. 2017; 238:  992
    • 7f Shi Z. Li W. Synthesis 2017; 49: 2081
    • 7g Cao X. Shi Y. Gao H. Synlett 2017; 28: 391
    • 7h Wang C. Ikhlef D. Kahlal S. Saillard J.-Y. Astruc D. Coord. Chem. Rev. 2016; 316: 1
    • 7i Sarode PB. Bahekar SP. Chandak HS. Synlett 2016; 27: 2681
    • 8a Beckendorf S. Mancheno OG. Synthesis 2012; 44: 2162
    • 8b Bolshakov OI. Lebedyeva IO. Katritzky AR. Synthesis 2012; 44: 2926
    • 8c Sokolova NV. Schotten T. Berthold HJ. Thiem J. Nenajdenko VG. Synthesis 2013; 45: 556
    • 8d Li S. Cai H. He J. Chen H. Lam S. Cai T. Zhu Z. Bark SJ. Cai C. Bioconjugate Chem. 2016; 27: 2315
    • 8e Taskin OS. Yilmaz G. Yagci Y. ACS Macro Lett. 2016; 5: 103
    • 8f Gan W. Shi Y. Jing B. Cao X. Zhu Y. Gao H. Macromolecules 2017; 50: 215
    • 9a Brik A. Alexandratos J. Lin Y.-C. Elder JH. Olson AJ. Wlodawer A. Goodsell DS. Wong C.-H. ChemBioChem 2005; 6: 1167
    • 9b Oh K. Guan Z. Chem. Commun. 2006; 29: 3069
    • 9c Horne WS. Yadav MK. Stout CD. Ghadiri MR. J. Am. Chem. Soc. 2004; 126: 15366
    • 9d Angelo GN. Arora PS. J. Am. Chem. Soc. 2005; 127: 17134
    • 10a Cabanetos C. Bentoumi W. Silvestre V. Blart E. Pellegrin Y. Montembault V. Barsella A. Dorkeno K. Bretonnieere Y. Andraud C. Mager L. Fontaine L. Odobe F. Chem. Mater. 2012; 24: 1143
    • 10b Voit B. Fleischmann S. Komber H. Scheel A. Stumpe K. Macromol. Symp. 2007; 254: 16
    • 10c Panyam J. Labhasetwar V. Adv. Drug Deliv. Rev. 2003; 55: 329
    • 10d Katz E. Willner I. Angew. Chem. Int. Ed. 2004; 43: 6042
    • 11a Vieira AS. Fiorante PF. Hough TL. S. Ferreira FP. Ludtke DS. Stefani HA. Org. Lett. 2008; 10: 5215
    • 11b Shamim A. Souza FB. Vasconcelos SN. S. Stefani HA. Tetrahedron Lett. 2017; 58: 884
    • 11c Shamim A. Souza FB. Gustavo HG.T. Fernando MG. Stefani HA. Mol. Diversity 2015; 19: 423
    • 11d Shamim A. Barbeiro CS. Ali B. Stefani HA. ChemistrySelect 2016; 1: 5653
    • 11e Zukerman-Schpector J. Caracelli I. Stefani HA. Shamim A. Tiekink ER. T. Acta Crystallogr., Sect. E. 2015; 71: o53
    • 12a Trost BM. Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 12b Nakamura H. Iwama H. Yamamoto Y. J. Am. Chem. Soc. 1996; 118: 6641
    • 12c Nakamura K. Nakamura H. Yamamoto Y. J. Org. Chem. 1999; 64: 2614
    • 12d Wallner OA. Szabo KJ. Org. Lett. 2002; 4: 1563
    • 12e Nakamura H. Bao M. Yamamoto Y. Angew. Chem. Int. Ed. 2001; 40: 3208
    • 12f Solin N. Narayan S. Szabo KJ. J. Org. Chem. 2001; 66: 1686
    • 13a Tsuji J. Takashashi H. Morikawa M. Tetrahedron Lett. 1965; 49: 4387
    • 13b Murahashi S.-I. Taniguchi Y. Imada Y. Tanigawa Y. J. Org. Chem. 1989; 54: 3292
    • 14a Trost BM. Strege PE. J. Am. Chem. Soc. 1977; 99: 1649
    • 14b Wimmer P. Widhalm M. Tetrahedron: Asymmetry 1995; 6: 657
    • 14c Trost BM. Organ MG. J. Am. Chem. Soc. 1994; 116: 10320