Synthesis 2017; 49(16): 3670-3675
DOI: 10.1055/s-0036-1589040
paper
© Georg Thieme Verlag Stuttgart · New York

Boronic Acid Catalysis for Aza-Piancatelli Rearrangement

Wu-Bang Tang ‡
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China   Email: wzheng@nju.edu.cn
,
Kou-Sen Cao ‡
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China   Email: wzheng@nju.edu.cn
,
Shan-Shui Meng
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China   Email: wzheng@nju.edu.cn
,
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China   Email: wzheng@nju.edu.cn
› Author Affiliations
Generous financial support from the National Natural Science Foundation of China (21202081), the Natural Science Foundation of Jiangsu Province (BK2012297), Research Fund for the Doctoral Program of Higher Education of China (20120091120026), and Nanjing University is gratefully acknowledged.
Further Information

Publication History

Received: 17 April 2017

Accepted after revision: 05 May 2017

Publication Date:
20 June 2017 (online)


These authors contributed equally to this work

Abstract

A first example of boronic acid catalyzed intermolecular aza-Piancatelli rearrangement to access a wide range of trans-4,5-disubstituted cyclopentenones is described. The catalytic system can also be extended to intramolecular aza-Piancatelli rearrangement to afford a wide range of azaspirocycles. Good to excellent yields were obtained in an excellent diastereoselective manner.

Supporting Information

 
  • References


    • For Nazarov reactions and Pauson–Khand reactions, see:
    • 1a Santelli-Rouvier C. Santelli M. Synthesis 1983; 429
    • 1b Habermas KL. Denmark SE. Jones TK. In Organic Reactions . Vol. 45. Paquette LA. Wiley; New York: 1994: 1-158
    • 1c Harmata M. Chemtracts 2004; 17: 416
    • 1d Pellissier H. Tetrahedron 2005; 61: 6479
    • 1e Frontier AJ. Collison C. Tetrahedron 2005; 61: 7577
    • 1f Tius MA. Eur. J. Org. Chem. 2005; 2193
    • 1g Nakanishi N. West FG. Curr. Opin. Drug Discov. Dev. 2009; 12: 732
    • 1h Shimada N. Stewart C. Tius MA. Tetrahedron 2011; 67: 5851
    • 1i Vaidya T. Eisenberg R. Frontier AJ. ChemCatChem 2011; 3: 1531
    • 1j Spencer WT. III. Vaidya T. Frontier AJ. Eur. J. Org. Chem. 2013; 3621
    • 1k Tius MA. Chem. Soc. Rev. 2014; 43: 2979
    • 1l Blanco-Urgoiti J. Anorbe L. Perez-Serrano L. Dominguez G. Perez-Castells J. Chem. Soc. Rev. 2004; 33: 32
    • 1m Grant TN. Rieder CJ. West FG. Chem. Commun. 2009; 5676
    • 1n Gibson SE. Mainolfi N. Angew. Chem. Int. Ed. 2005; 44: 3022
    • 2a Piancatelli G. Scettri A. Barbadoro S. Tetrahedron Lett. 1976; 3555
    • 2b Faza AN. Lopez CS. Alvarez R. de Lera IR. Chem. Eur. J. 2004; 10: 4324
    • 2c Piancatelli G. Dauria M. Donofrio F. Synthesis 1994; 867

      For recent examples, see:
    • 3a Veits GK. Wenz DR. Read de Alaniz J. Angew. Chem. Int. Ed. 2010; 49: 9484
    • 3b Palmer LI. Read de Alaniz J. Angew. Chem. Int. Ed. 2011; 50: 7167
    • 3c Subba Reddy BV. Reddy YV. Lakshumma PS. Narasimhulu G. Yadav JS. Sridhar B. Reddy PP. Kunwar AC. RSC Adv. 2012; 2: 10661
    • 3d Liu J. Shen Q. Yu J. Zhu M. Han J. Wang L. Eur. J. Org. Chem. 2012; 6933
    • 3e Palmer LI. Read de Alaniz J. Org. Lett. 2013; 15: 476
    • 3f Wenz DR. Read de Alaniz J. Org. Lett. 2013; 15: 3250
    • 3g Yu D. Tahai VT. Palmer LI. Veits GK. Cook JE. Read de Alaniz J. Hein JE. J. Org. Chem. 2013; 78: 12784
    • 3h Yin B. Huang L. Wang X. Liu J. Jiang H. Adv. Synth. Catal. 2013; 355: 370
    • 3i Fisher D. Palmer LI. Cook JE. Davis JE. Read de Alaniz J. Tetrahedron 2014; 70: 4105
    • 3j Lebœuf D. Schulz E. Gandon V. Org. Lett. 2014; 16: 6464
    • 3k Li H. Tong R. Sun J. Angew. Chem. Int. Ed. 2016; 55: 15125
    • 3l Cai Y. Tang Y. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 14126
    • 3m Xu Z.-L. Xing P. Jiang B. Org. Lett. 2017; 19: 1028
    • 4a Jia F. Hong J. Sun P.-H. Chen J.-X. Chen W.-M. Synth. Commun. 2013; 43: 2641
    • 4b Hanessian S. Vakiti RR. Dorich S. Banerjee S. Lecomte F. Del Valle JR. Zhang J. Deschenes-Simard B. Angew. Chem. Int. Ed. 2011; 50: 3497
    • 4c Malinowski JT. Sharpe RJ. Johnson JS. Science 2013; 340: 180
    • 4d Sharpe RJ. Malinowski JT. Johnson JS. J. Am. Chem. Soc. 2013; 135: 17990
    • 4e Kobayashi Y. Miyazaki H. Shiozaki M. J. Am. Chem. Soc. 1992; 114: 10065
    • 4f Ledford BE. Carreira EM. J. Am. Chem. Soc. 1995; 117: 11811

      For reviews of BAC, see:
    • 5a Dimitrijević E. Taylor MS. ACS Catal. 2013; 3: 945
    • 5b Georgiou I. Ilyashenko G. Whiting A. Acc. Chem. Res. 2009; 42: 756
    • 6a Al-Zoubi RM. Marion O. Hall DG. Angew. Chem. Int. Ed. 2008; 47: 2876
    • 6b Zheng H. Hall DG. Tetrahedron Lett. 2010; 51: 3561
    • 6c Zheng H. McDonald R. Hall DG. Chem. Eur. J. 2010; 16: 5454
    • 6d Arnold K. Davies B. Hérault D. Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
    • 6e Aelvoet K. Batsanov AS. Blatch AJ. Grosjean C. Patrick LG. F. Smethurst CA. Whiting A. Angew. Chem. Int. Ed. 2008; 47: 768
    • 6f Zheng H. Lejkowski M. Hall DG. Chem. Sci. 2011; 2: 1305
    • 6g Zheng H. Lejkowski M. Hall DG. Tetrahedron Lett. 2013; 54: 91
    • 6h Zheng H. Ghanbari S. Nakamura S. Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
    • 6i Soeta T. Kojima Y. Ukaji Y. Inomata K. Tetrahedron Lett. 2011; 52: 2557
    • 6j McCubbin JA. Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
    • 6k McCubbin JA. Hosseini H. Krokhin OV. J. Org. Chem. 2010; 75: 959
    • 6l Li M. Yang T. Dixon DJ. Chem. Commun. 2010; 46: 2191
    • 6m Debache A. Boumoud B. Amimour M. Belfaitah A. Rhouati S. Carboni B. Tetrahedron Lett. 2006; 47: 5697
    • 6n Rao G. Philipp M. J. Org. Chem. 1991; 56: 1505
    • 6o Sakakura A. Ohkubo T. Yamashita R. Akakura M. Ishihara K. Org. Lett. 2011; 13: 892
    • 6p Marcelli T. Angew. Chem. Int. Ed. 2010; 49: 6840
    • 6q Ishihara K. Ohara S. Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 6r Li Y. de La Torre JA. M. Grabow K. Bentrup U. Junge K. Zhou S. Brückner A. Beller M. Angew. Chem. Int. Ed. 2013; 52: 11577
    • 6s Lee D. Taylor MS. J. Am. Chem. Soc. 2011; 133: 3724
    • 6t William JM. Kuriyama M. Onomura O. Adv. Synth. Catal. 2014; 356: 934
    • 6u Maki T. Ishihara K. Yamamoto H. Tetrahedron 2007; 63: 8645
  • 7 Cao K.-S. Bian H.-X. Zheng W.-H. Org. Biomol. Chem. 2015; 13: 6449
    • 8a Dake G. Tetrahedron 2006; 62: 3467
    • 8b Auerbach J. Weinreb SM. J. Am. Chem. Soc. 1972; 94: 7172
    • 8c Semmelhack MF. Chong BP. Jones LD. J. Am. Chem. Soc. 1972; 94: 8629
    • 8d Eckelbarger JD. Wilmot JT. Gin DY. J. Am. Chem. Soc. 2006; 128: 10370
    • 8e Taniguchi T. Tanabe G. Muraoka O. Ishibashi H. Org. Lett. 2008; 10: 197
    • 8f Zhao Y.-M. Gu P. Tu Y.-Q. Fan C.-A. Zhang Q. Org. Lett. 2008; 10: 1763
    • 8g Clive DL. J. Yu ML. Wang J. Yeh VS. C. Kang SZ. Chem. Rev. 2005; 105: 4483
    • 8h Sinclair A. Stockman RA. Nat. Prod. Rep. 2007; 24: 298
    • 8i Nilsson BL. Overman LE. Read de Alaniz J. Rohde JM. J. Am. Chem. Soc. 2008; 130: 11297
    • 8j Cheng X. Waters SP. Org. Lett. 2010; 12: 205