Synthesis 2017; 49(07): 1680-1688
DOI: 10.1055/s-0036-1588919
paper
© Georg Thieme Verlag Stuttgart · New York

Arenediazonium Tosylates (ADTs) as Efficient Reagents for Suzuki–Miyaura Cross-Coupling in Neat Water

Ksenia V. Kutonova
a   Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
Nicole Jung
b   Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany   Email: braese@kit.edu
c   Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
,
Marina E. Trusova
a   Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
Victor D. Filimonov
a   Department of Biotechnology and Organic Chemistry, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
,
Pavel S. Postnikov*
d   Department of Technology of Organic substances and Polymer materials, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation   Email: postnikov@tpu.ru
,
Stefan Bräse*
b   Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany   Email: braese@kit.edu
c   Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
› Author Affiliations
Further Information

Publication History

Received: 28 October 2016

Accepted after revision: 31 October 2016

Publication Date:
29 November 2016 (online)


Abstract

A simple, convenient, and environment-friendly procedure for the preparation of substituted biaryls via Suzuki–Miyaura cross-coupling­ was developed. The use of arenediazonium tosylates and corresponding boron compounds allows a conversion in neat water in the presence of commercially available Pd(OAc)2 under mild conditions with tolerance to a wide range of functional groups. A procedure particularly useful for the synthesis of di-ortho-substituted biaryls was developed.

Supporting Information

 
  • References

    • 1a Bergman JM, Roecker AJ, Mercer SP, Bednar RA, Reiss DR, Ransom RW, Meacham HarrellC, Pettibone DJ, Lemaire W, Murphy KL, Li C, Prueksaritanont T, Winrow CJ, Renger JJ, Koblan KS, Hartman GD, Coleman PJ. Bioorg. Med. Chem. Lett. 2008; 18: 1425
    • 1b Hilton L, Osborne R, Kenyon AS, Baldock H, Bunnage ME, Burrows J, Clarke N, Coghlan M, Entwistle D, Fairman D, Feeder N, James K, Jones RM, Laouar N, Lunn G, Marshall S, Newman SD, Patel S, Selby MD, Spence F, Stuart EF, Summerhill S, Trevethick MA, Wright KN, Yeadon M, Price DA, Jones LH. Med. Chem. Commun. 2011; 2: 870
    • 1c Kaushik-Basu N, Bopda-Waffo A, Talele TT, Basu A, Chen Y, Kucukguzel SG. Front. Biosci. 2008; 13: 3857
    • 1d Meegalla SK, Wall MJ, Chen J, Wilson KJ, Ballentine SK, Desjarlais RL, Schubert C, Crysler CS, Chen Y, Molloy CJ, Chaikin MA, Manthey CL, Player MR, Tomczuk BE, Illig CR. Bioorg. Med. Chem. Lett. 2008; 18: 3632
    • 1e Taniguchi K, Katsura Y, Ueda I, Matsuo M. Chem. Pharm. Bull. 1992; 40: 240
  • 2 Ullmann F, Tcherniack J. Ber. Dtsch. Chem. Ges. 1905; 38: 4110
    • 3a Cepanec I. Synthesis of Biaryls . Elsevier; Oxford: 2004
    • 3b McGlacken GP, Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
  • 4 Gomberg M, Bachmann WE. J. Am. Chem. Soc. 1924; 46: 2339
  • 5 Atkinson ER, Lawler HJ, Heath JC, Kimball EH, Read ER. J. Am. Chem. Soc. 1941; 63: 730
  • 6 Kovacic P, Jones MB. Chem. Rev. 1987; 87: 357
  • 7 Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
    • 8a Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 8b Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 9a Roglans A, Pla-Quintana A, Moreno-Mañas M. Chem. Rev. 2006; 106: 4622
    • 9b Bonin H, Fouquet E, Felpin FX. Adv. Synth. Catal. 2011; 353: 3063
    • 9c Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
    • 9d Oger N, Dhalluin M, Le Grognec E, Felpin FX. Org. Process Res. Dev. 2014; 18: 1786
    • 9e Darses S, Jeffery T, Genet J.-P, Brayer J.-L, Demoute J.-P. Tetrahedron Lett. 1996; 37: 3857
    • 10a Leadbeater NE. Chem. Commun. 2005; 23: 2881
    • 10b Polshettiwar V, Decottignies A, Len C, Fihri A. ChemSusChem 2010; 3: 502
  • 11 Zarei A, Khazdooz L, Hajipour AR, Rafiee F, Azizi G, Abrishami F. Tetrahedron Lett. 2012; 53: 406
  • 12 Cacchi S, Caponetti E, Casadei MA, Di Giulio A, Fabrizi G, Forte G, Goggiamani A, Moreno S, Paolicelli P, Petrucci F, Prastaro A, Saladino ML. Green Chem. 2012; 14: 317
  • 13 El Bakouri O, Fernández M, Brun S, Pla-Quintana A, Roglans A. Tetrahedron 2013; 69: 9761
  • 14 Jadhav SN, Kumbhar AS, Rode CV, Salunkhe RS. Green Chem. 2016; 18: 1898
  • 15 Filimonov VD, Trusova M, Postnikov P, Krasnokutskaya EA, Lee YM, Hwang HY, Kim H, Chi KW. Org. Lett. 2008; 10: 3961
    • 16a Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS. Res. Eff. Technol. 2016; 2: 36
    • 16b Moon ME, Choi Y, Lee YM, Vajpayee V, Trusova M, Filimonov VD, Chi K.-W. Tetrahedron Lett. 2010; 51: 6769
    • 16c Lee YM, Moon ME, Vajpayee V, Filimonov VD, Chi K.-W. Tetrahedron 2010; 66: 7418
    • 16d Trusova ME, Krasnokutskaya EA, Postnikov PS, Choi Y, Chi K.-W, Filimonov VD. Synthesis 2011; 2154
  • 17 Kutonova KV, Trusova ME, Postnikov P, Filimonov VD, Parello J. Synthesis 2013; 45: 2706
    • 18a Kutonova KV, Trusova ME, Stankevich AV, Postnikov PS, Filimonov VD. Beilstein J. Org. Chem. 2015; 11: 358
    • 18b Vajpayee V, Song Y.-H, Ahn J.-S, Chi K.-W. Bull. Korean Chem. Soc. 2011; 32: 2970
    • 19a Andrus MB, Song C. Org. Lett. 2001; 3: 3761
    • 19b Felpin FX, Fouquet E, Zakri C. Adv. Synth. Catal. 2009; 351: 649
    • 19c Kuethe JT, Childers KG. Adv. Synth. Catal. 2008; 350: 1577
    • 19d Felpin FX, Fouquet E. Adv. Synth. Catal. 2008; 350: 863
    • 19e Darses S, Genêt JP, Brayer JL, Demoute JP. Tetrahedron Lett. 1997; 38: 4393
    • 19f Darses S, Jeffery T, Brayer JL, Demoute JP, Genet J.-P. Bull. Soc. Chim. Fr. 1996; 133: 1095
    • 19g Qin Y, Wei W, Luo M. Synlett 2007; 2410
    • 19h Li X, Yan X.-Y, Chang H.-H, Wang L.-C, Zhang Y, Chen W.-W, Li Y.-W, Wei W.-L. Org. Biomol. Chem. 2012; 10: 495
  • 20 Widdowson DA, Wilhelm R. Chem. Commun. 2003; 578
    • 21a Joncour R, Susperregui N, Pinaud N, Miqueu K, Fouquet E, Sotiropoulos JM, Felpin FX. Chem. Eur. J. 2013; 19: 9291
    • 21b Susperregui N, Miqueu K, Sotiropoulos J.-M, Le Callonnec F, Fouquet E, Felpin F.-X. Chem. Eur. J. 2012; 18: 7210
    • 22a Darses S, Michaud G, Genet JP. Eur. J. Org. Chem. 1999; 1875
    • 22b Masllorens J, González I, Roglans A. Eur. J. Org. Chem. 2007; 158
    • 23a Naghipour A, Fakhri A. Catal. Commun. 2016; 39
    • 23b Dixit S, Siddiqui QT, Muneer M, Agarwal N. Tetrahedron Lett. 2016; 57: 4228
    • 23c Hoffmann I, Blumenröder B, Onodi née Thumann S, Dommer S, Schatz J. Green Chem. 2015; 17: 3844
    • 23d Guan Z, Hu J, Gu Y, Zhang H, Li G, Li T. Green Chem. 2012; 14: 1964
    • 23e Bhojane JM, Sarode SA, Nagarkar JM. New J. Chem. 2016; 40: 1564
    • 23f Pavia C, Ballerini E, Bivona LA, Giacalone F, Aprile C, Vaccaro L, Gruttadauria M. Adv. Synth. Catal. 2013; 355: 2007
    • 23g Da Silva JF. M, Yepes PA. F, De Almeida NP. Synth. Commun. 2015; 45: 1995
    • 23h Mohan A, Ramkumar V, Sankararaman S. J. Organomet. Chem. 2015; 799–800: 115
    • 23i Prastaro C, Chiancone B, Cirilli C, Fabrizi St, Cacchi S. Green Chem. 2009; 11: 1929
    • 23j Liu J.-B, Zhou H.-P, Peng Yi-Y. Tetrahedron Lett. 2014; 55: 2872
    • 23k Liang Sh, Cao Xi, Yan Xi, Chen L. J. Chem. Res. 2012; 36: 555
    • 23l Roe F. J. Am. Chem. Soc. 1947; 69: 509
    • 23m Erdtman H, Haglid F, Stjernström NE. Acta Chem. Scand. 1961; 15: 1761
    • 23n Elumalai V, Sandtorv AH, Bjorsvik H.-R. Eur. J. Org. Chem. 2016; 1344
    • 23o Forbes EJ, Tatlow JC, Wragg RT. Tetrahedron 1960; 8: 73
    • 23p Hachiya S, Asai K, Konishi G.-I. Tetrahedron Lett. 2013; 54: 1839