Synthesis 2017; 49(05): 1073-1086
DOI: 10.1055/s-0036-1588893
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Di- and Triarylmethanes through Palladium-Catalyzed Reductive Coupling of N-Tosylhydrazones and Aryl Bromides

Yamu Xia
a   College of Chemical Engineering, Qingdao University of Science Technology, Qingdao 266042, P. R. of China
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Fangdong Hu
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Ying Xia
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Zhenxing Liu
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Fei Ye
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Yan Zhang
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
,
Jianbo Wang*
b   Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, P. R. of China   Email: wangjb@pku.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 27 July 2016

Accepted after revision: 14 September 2016

Publication Date:
13 October 2016 (online)


Abstract

A palladium-catalyzed reductive coupling between N-tosylhydrazones and aryl bromides has been developed. The reaction provides an efficient method for the synthesis of diarylmethanes and triarylmethanes via the formation of C(sp2)–C(sp3) single bonds. This new methodology for the synthesis of diarylmethanes and triarylmethanes is featured by the ready availability of the starting materials, mild reaction conditions, and the tolerance of wide range of functional groups. The reaction follows a pathway including palladium carbene formation, migratory insertion, and reduction of the alkylpalladium(II) intermediate.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
    • 1b Ma J.-C, Dougherty DA. Chem. Rev. 1997; 97: 1303
    • 1c Duxbury DF. Chem. Rev. 1993; 93: 381
    • 1d Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. Chem. Soc. Rev. 2008; 37: 1465
    • 1e Beija M, Afonso CA. M, Martinho JM. G. Chem. Soc. Rev. 2009; 38: 2410
    • 1f Nair V, Thomas S, Mathew SC, Abhilash KG. Tetrahedron 2006; 62: 6731

      For selected examples, see:
    • 2a Cheltsov AV, Aoyagi M, Aleshin A, Yu EC.-W, Gilliland T, Zhai D, Bobkov AA, Reed JC, Liddington RC, Abagyan R. J. Med. Chem. 2010; 53: 3899
    • 2b Palchaudhuri R, Nesterenko V, Hergenrother PJ. J. Am. Chem. Soc. 2008; 130: 10274
    • 2c Long Y.-Q, Jiang X.-H, Dayam R, Sachez T, Shoemaker R, Sei S, Neamati N. J. Med. Chem. 2004; 47: 2561
    • 2d Parai MK, Panda G, Chaturvedi V, Manju YK, Sinha S. Bioorg. Med. Chem. Lett. 2008; 18: 289
    • 2e Snyder SA, Breazzano SP, Ross AG, Lin Y, Zografos AL. J. Am. Chem. Soc. 2009; 131: 1753
    • 2f Bhasikuttan AC, Mohanty J, Nau WM, Pal H. Angew. Chem. Int. Ed. 2007; 46: 4120
    • 2g Abe H, Wang J, Furukawa K, Oki K, Uda M, Tsuneda S, Ito Y. Bioconjugate Chem. 2008; 19: 1219

      For recent examples, see:
    • 3a Zhao F, Tan Q, Xiao F, Zhang S, Deng G.-J. Org. Lett. 2013; 15: 1520
    • 3b Binder JT, Cordier CJ, Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
    • 3c Gao J, Wang J.-Q, Song Q.-W, He L.-N. Green Chem. 2011; 13: 1182
    • 3d Schmink JR, Leadbeater NE. Org. Lett. 2009; 11: 2575
    • 3e López-Pérez A, Adrio J, Carretero JC. Org. Lett. 2009; 11: 5514
    • 3f Zal Zotto C, Virieux D, Campagne J.-M. Synlett 2009; 276
    • 3g Surya Prakash GK, Mathew T, Marinez ER, Esteves PM, Rasul G, Olah GA. J. Org. Chem. 2006; 71: 3952
    • 3h Esquivias J, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
    • 3i Arp FO, Fu GC. J. Am. Chem. Soc. 2005; 127: 10482

    • For a review, see:
    • 3j Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 4a Friedel–Crafts Chemistry . Olah GA. Wiley; New York: 1973
    • 4b Li YZ, Li BJ, Lu XY, Lin S, Shi ZJ. Angew. Chem. Int. Ed. 2009; 48: 3817
    • 4c Li ZX, Duan Z, Kang JX, Wang HQ, Yu LJ, Wu YJ. Tetrahedron 2008; 64: 1924
    • 4d Esquivias J, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
    • 4e Ivoel I, Mertins K, Kischel J, Zapf A, Beller M. Angew. Chem. Int. Ed. 2005; 44: 3913
    • 4f Ogoshi S, Nakashima H, Shimonaka K, Kurosawa H. J. Am. Chem. Soc. 2001; 123: 8626
    • 5a Metal Catalysed Cross Coupling Reactions . 2nd ed.; de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
    • 5b Tsubouchi A, Muramatsu D, Takeda T. Angew. Chem. Int. Ed. 2013; 52: 12719
    • 5c Maity P, Shacklady-Mcatee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 5d Adams CJ, Bedford RB, Carter E, Gower NJ, Haddow MF, Harvey JN, Huwe M, Cartes MA, Mansell SM, Mendoza C, Murphy DM, Neeve EC, Nunn J. J. Am. Chem. Soc. 2012; 134: 10333
    • 5e Taylor BL. H, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
    • 5f Piller FM, Metzger A, Schade MA, Haag BA, Gavryushin A, Knochel P. Chem. Eur. J. 2009; 15: 7192
    • 5g Liégault B, Renaud J.-L, Bruneau C. Chem. Soc. Rev. 2008; 37: 290
    • 5h Dohle W, Lindsay DM, Knochel P. Org. Lett. 2001; 3: 2871
    • 5i Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
    • 5j Matthew SC, Glasspoole BW, Eisenberger P, Crudden CM. J. Am. Chem. Soc. 2014; 136: 5828
    • 5k Zhuo M.-H, Jiang Y.-J, Fan Y.-S, Gao Y, Liu S, Zhang S. Org. Lett. 2014; 16: 1096
    • 5l Nambo M, Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
    • 5m Huang Y, Hayashi T. J. Am. Chem. Soc. 2015; 137: 7556

    • For a recent review, see:
    • 5n Nambo M, Crudden CM. ACS Catal. 2015; 5: 4734
    • 6a Zhang Y, Feng M.-T, Lu J.-M. Org. Biomol. Chem. 2013; 11: 2266
    • 6b Srimani D, Bej A, Sarkar A. J. Org. Chem. 2010; 75: 4296
    • 6c Chen C.-R, Zhou S, Biradar DB, Gau H.-M. Adv. Synth. Catal. 2010; 352: 1718
    • 6d Molander GA, Elia MD. J. Org. Chem. 2006; 71: 9198
    • 6e McLaughlin M. Org. Lett. 2005; 7: 4875
    • 6f Flaherty A, Trunkfield A, Barton W. Org. Lett. 2005; 7: 4975
    • 7a Tabuchi S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 5401
    • 7b Bellomo A, Zhang J, Trongsiriwat N, Walsh PJ. Chem. Sci. 2013; 4: 849
    • 7c Zhang J, Bellomo A, Creamer AD, Dreher SD, Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
    • 7d Taylor BL. H, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
    • 7e McGrew GI, Temaismithi J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2010; 49: 5541
    • 7f Yu JY, Kuwano R. Org. Lett. 2008; 10: 973
    • 7g Niwa T, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 2373

      For reviews, see:
    • 8a Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 8b Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 8c Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 8d Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
    • 8e Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 8f Liu Z, Wang J. J. Org. Chem. 2013; 78: 10024
  • 9 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
  • 10 Zhang Y, Wang J. Eur. J. Org. Chem. 2011; 1015

    • For selected examples, see:
    • 11a Barluenga J, Moriel P, Valdés C, Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 11b Messaoudi S, Tréguier B, Hamze A, Morvan E, Brion J.-D, Alami M. J. Med. Chem. 2009; 52: 4538
    • 11c Zhou L, Ye F, Ma J, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2011; 50: 3510
    • 11d Xiao Q, Ma J, Yang Y, Zhang Y, Wang J. Org. Lett. 2009; 11: 4732
    • 11e Zhao X, Jing J, Lu K, Zhang Y, Wang J. Chem. Commun. 2010; 46: 1724
  • 12 Xia Y, Hu F, Liu Z, Qu P, Ge R, Ma C, Wang J. Org. Lett. 2013; 15: 1784
  • 13 For the details of the reaction condition optimization, see ref. 12.
  • 14 Miller B, McLaughlin MP, Marhevka VC. J. Org. Chem. 1982; 47: 710
  • 15 Chang S.-T, Li Q, Chiang R.-T, Gau H.-M. Tetrahedron 2012; 68: 3956
  • 16 Aitken RA, Boeters C, Morrison JJ. J. Chem. Soc., Perkin Trans. 1 1997; 2625
  • 17 Young JD, Stevenson GR, Bauld NL. J. Am. Chem. Soc. 1972; 94: 8790
  • 18 Aoyama T, Kubota S, Takido T, Kodomari M. Chem. Lett. 2011; 40: 484
  • 19 Saito S, Ohwada T, Shudo K. J. Org. Chem. 1996; 61: 8089
  • 20 Prakash GK. S, Panja C, Shakhmin A, Shah E, Mathew T, Olah GA. J. Org. Chem. 2009; 74: 8659
  • 21 Zabel DE, Trahanovsky WS. J. Org. Chem. 1972; 37: 2413
  • 22 Bank S, Gernon M. J. Org. Chem. 1987; 52: 5105
  • 23 Klumpp DA, Jones A, Lau S, Leon SD, Garza M. Synthesis 2000; 1117