Synthesis 2017; 49(16): 3654-3661
DOI: 10.1055/s-0036-1588826
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Fluorine-Containing Analogues of 1-Lysoglycerophospholipids via Horner–Wadsworth–Emmons Reaction

Michiyasu Nakao
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Kazue Tanaka
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Syuji Kitaike
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
,
Shigeki Sano*
Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, Tokushima 770-8505, Japan   Email: ssano@tokushima-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 06 March 2017

Accepted after revision: 10 April 2017

Publication Date:
18 May 2017 (online)


Abstract

An efficient method of synthesizing fluorine-containing analogues of 1-lysoglycerophospholipids (1-LPLs) by introducing a palmitoyl moiety starting from bis(2,2,2-trifluoroethyl)phosphonoacetate (Still–Gennari reagent) is described. The method effectively employs Horner–Wadsworth–Emmons reagents as masked 1-LPL derivatives to prepare a series of analogues of 1-lysophosphatidic acid (1-LPA), 1-lysophosphatidylethanolamine (1-LPE), and 1-lysophosphatidylcholine (1-LPC).

Supporting Information

 
  • References

    • 1a D’Arrigo P. Servi S. Molecules 2010; 15: 1354
    • 1b Nagamatsu T. Iwasawa-Kawai Y. Ichikawa M. Kawana K. Yamashita T. Osuga Y. Fujii T. Schust DJ. Am. J. Reprod. Immunol. 2014; 72: 182
    • 1c Kihara Y. Mizuno H. Chun J. Exp. Cell Res. 2015; 333: 171
    • 1d Li J. Wang X. Zhang T. Wang C. Huang Z. Luo X. Deng Y. Asian J. Pharm. Sci. 2015; 10: 81
    • 1e Yung YC. Stoddard NC. Mirendil H. Chun J. Neuron 2015; 85: 669
    • 1f Takeda A. Umemoto E. Miyasaka M. Transl. Cancer Res. 2015; 4: 537
    • 1g Fukushima N. Ishii S. Tsujiuchi T. Kagawa N. Katoh K. Cell. Mol. Life Sci. 2015; 72: 2377
    • 1h Arifin SA. Falasca M. Metabolites 2016; 6: No. 6
    • 1i Mizejewski GJ. Curr. Drug Targets 2017; 18: 874
    • 2a Plückthun A. Dennis EA. Biochemistry 1982; 21: 1743
    • 2b Adlercreutz D. Budde H. Wehtje E. Biotechnol. Bioeng. 2002; 78: 403
    • 2c Qian L. Xu Y. Arai H. Aoki J. McIntyre TM. Prestwich GD. Org. Lett. 2003; 5: 4685
    • 2d Vikbjerg AF. Mu H. Xu X. J. Am. Oil Chem. Soc. 2006; 83: 609
    • 2e Okudaira M. Inoue A. Shuto A. Nakanaga K. Kano K. Makide K. Saigusa D. Tomioka Y. Aoki J. J. Lipid Res. 2014; 55: 2178
    • 3a O’Hagan D. Rzepa HS. Chem. Commun. 1997; 645
    • 3b Pongdee R. Liu H. Bioorg. Chem. 2004; 32: 393
    • 3c Jeschke P. ChemBioChem 2004; 5: 570
    • 3d Edmonds M. Peddie V. Chem. New Zealand 2006; 70: 85
    • 3e Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 3f Liu P. Sharon A. Chu CK. J. Fluorine Chem. 2008; 129: 743
    • 3g Hunter L. Beilstein J. Org. Chem. 2010; 6: No. 38
    • 3h Menaa F. Menaa B. Sharts ON. J. Mol. Pharm. Org. Process Res. 2013; 1: 104
    • 4a Xu Y. Prestwitch GD. J. Org. Chem. 2002; 67: 7158
    • 4b Xu Y. Qian L. Prestwitch GD. J. Org. Chem. 2003; 68: 5320
    • 4c Xu Y. Aoki J. Shimizu K. Umezu-Goto M. Hama K. Takanezawa Y. Yu S. Mills GB. Arai H. Qian L. Prestwich GD. J. Med. Chem. 2005; 48: 3319
  • 5 Sano S. Sumiyoshi H. Handa A. Tokizane R. Nakao M. Tetrahedron Lett. 2015; 56: 4686
  • 7 DeHoff B. Roy M.-N. Methyl Bis(2,2,2-trifluoroethoxy)phosphinylacetate. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2012
    • 8a Jiang G. Xu Y. Falguières T. Gruenberg J. Prestwich GD. Org. Lett. 2005; 7: 3837
    • 8b Kristinsson B. Haraldsson GG. Synlett 2008; 2178
    • 8c Machado AC. O. da Silva AA. T. Borges CP. Simas AB. C. Freire DM. G. J. Mol. Catal. B: Enzym. 2011; 69: 42
  • 9 Yin J. Zarkowsky DS. Thomas DW. Zhao MM. Huffman MA. Org. Lett. 2004; 6: 1465
  • 10 Horita K. Yoshioka T. Yanaka T. Oikawa Y. Yonemitsu O. Tetrahedron 1986; 42: 3021
    • 11a Sano S. Takemoto Y. Nagao Y. ARKIVOC 2003; (viii): 93
    • 11b Sano S. Kujime E. Takemoto Y. Shiro M. Nagao Y. Chem. Pharm. Bull. 2005; 53: 131
  • 12 Reddy JP. Yoakim C. 2-(Trimethylsilyl)ethanol. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2007
    • 13a Shiina I. Ibuka R. Kubota M. Chem. Lett. 2002; 31: 286
    • 13b Shiina I. Kubota M. Oshiumi H. Hashizume M. J. Org. Chem. 2004; 69: 1822
    • 13c Shiina I. Tetrahedron 2004; 60: 1587
  • 14 Shiina I. 2-Methyl-6-nitrobenzoic Anhydride (MNBA). In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley; New York: 2009
    • 15a Eibl H. Nicksch A. Chem. Phys. Lipids 1978; 22: 1
    • 15b Diembeck W. Eibl H. Chem. Phys. Lipids 1979; 24: 237
    • 16a Lim Z.-Y. Thuring JW. Holmes AB. Manifava M. Ktistakis NT. J. Chem. Soc., Perkin Trans. 1 2002; 1067
    • 16b Pilkington LI. Barker D. Eur. J. Org. Chem. 2014; 1037
    • 17a Qin D. Byun H.-S. Bittman R. J. Am. Chem. Soc. 1999; 121: 662
    • 17b Gil-Mesón A. Roncero AM. Tobal IE. Basabe P. Díez D. Mollinedo F. Marcos IS. Molecules 2016; 21: 47
  • 18 Fukase K. Matsumoto T. Ito N. Yoshimura T. Kotani S. Kusumoto S. Bull. Chem. Soc. Jpn. 1992; 65: 2643
  • 19 Bravo P. Piovosi E. Resnati G. J. Chem. Soc., Perkin Trans. 1 1989; 1201