Synlett 2017; 28(12): 1496-1500
DOI: 10.1055/s-0036-1588779
letter
© Georg Thieme Verlag Stuttgart · New York

Silver-Catalyzed Intramolecular C(5)–H Acyloxylation of 1,4-Di­substituted 1,2,3-Triazoles

Yaowen Liu
a   Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: ybjiang@kmust.edu.cn
,
Wensheng Zhang
b   School of Science and Technology, Jiaozuo Teachers’ College, Jiaozuo 454001, P. R. of China
,
Kai Xie
a   Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: ybjiang@kmust.edu.cn
,
Yubo Jiang*
a   Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. of China   Email: ybjiang@kmust.edu.cn
› Author Affiliations
Supported by: National Natural Science Foundation of China (21662020)
Further Information

Publication History

Received: 22 February 2017

Accepted after revision: 19 March 2017

Publication Date:
11 April 2017 (online)


Abstract

Silver-catalyzed direct lactonization of 1,4-disubstituted 1,2,3-triazole acids through C(5)–H acyloxylation is reported. This method provides a concise and efficient pathway to synthesize lactone-fused triazole derivatives, which were obtained in good to excellent yields at room temperature.

Supporting Information

 
  • References and Notes

    • 1a Engle KM. Mei TS. Wasa M. Yu JQ. Acc. Chem. Res. 2012; 45: 788
    • 1b Zhang B. Guan HX. Liu B. Shi BF. Chin. J. Org. Chem. 2014; 34: 1487
    • 1c Luo HQ. Zhang ZP. Liu HD. Liu HJ. Chin. J. Org. Chem. 2015; 35: 802
    • 1d Liu B. Hu F. Shi BF. ACS Catal. 2015; 5: 1863
    • 1e Iwai T. Sawamura M. ACS Catal. 2015; 5: 5031
    • 1f Lu BL. Li XY. Lin YM. Chin. J. Org. Chem. 2015; 35: 2275
    • 1g Tao PY. Jia YX. Sci. China: Chem. 2016; 59: 1109
    • 1h Li J. Zhang Z. Tang MY. Zang XL. Jin J. Org. Lett. 2016; 18: 3898
    • 1i Ruiz S. Villuendas P. Urriolabeitia EP. Tetrahedron Lett. 2016; 57: 3413
    • 1j Shi LL. Wang BQ. Org. Lett. 2016; 18: 2820
    • 1k Fan ZL. Ni JB. Zang A. J. Am. Chem. Soc. 2016; 138: 8470
    • 1l Zheng Q.-Z. Jiao N. Chem. Soc. Rev. 2016; 45: 4590
    • 2a Jia CG. Lu WJ. Oyamada J. Kitamura T. Matsuda K. Irie M. Fujiwara Y. J. Am. Chem. Soc. 2000; 122: 7252
    • 2b Covell DJ. White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
    • 2c Daugulis O. Do HQ. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 2d Barrios RM. Cabeza AL. G. Dorado FJ. M. Guerra FM. Massanet GM. J. Org. Chem. 2014; 79: 6501
    • 2e Rit KR. Yaday MR. Sahoo AK. J. Org. Lett. 2014; 16: 968
    • 2f Zhai WQ. Peng RF. Jin B. Wang WG. Org. Lett. 2014; 16: 1638
    • 2g Yan K. Yang DS. Wei W. Wang F. Shuai Y. Li Q. Wang H. J. Org. Chem. 2015; 80: 1550
    • 2h Okada T. Nobushige K. Satoh T. Miura M. Org. Lett. 2016; 18: 1150
    • 2i Minami Y. Hiyama T. Acc. Chem. Res. 2016; 49: 67
    • 2j Wang HW. Cui PP. Lu Y. Sun WY. Yu JQ. J. Org. Chem. 2016; 81: 3416
    • 2k Xiao KJ. Chu L. Chen G. Yu JQ. J. Am. Chem. Soc. 2016; 138: 7796
    • 2l Chen QA. Klare HF. T. Oeatreich M. J. Am. Chem. Soc. 2016; 138: 7868
    • 2m Lei XT. Xie HY. Xu C. Liu XY. Wen XA. Sun HB. Xu QL. Adv. Synth. Catal. 2016; 358: 1892
    • 2n Yang DJ. Zhu YF. Yang N. Jiang QQ. Liu R. Adv. Synth. Catal. 2016; 358: 1731
    • 3a Desai LV. Hull KL. Sanford MS. J. Am. Chem. Soc. 2004; 126: 9542
    • 3b Desai LV. Malik HA. Sanford MS. Org. Lett. 2006; 8: 1141
    • 3c Neufeldt SR. Sanford MS. Org. Lett. 2010; 12: 532
    • 3d Wang C. Flanigan DM. Zakharov LN. Blakemore PR. Org. Lett. 2011; 13: 4024
    • 3e Pradal A. Toullec PY. Michelet V. Org. Lett. 2011; 13: 6086
    • 3f Hu CJ. Zhang XH. Ding QP. Lv T. Ge SP. Zhong P. Tetrahedron Lett. 2012; 53: 2465
    • 3g Rit RK. Yadav MR. Sahoo AK. Org. Lett. 2012; 14: 3724
    • 3h Liu H. Shi G. Pan S. Jiang YY. Zhang YH. Org. Lett. 2013; 15: 4098
    • 3i Zhou LH. Lu WJ. Org. Lett. 2014; 16: 508
    • 3j Wu JL. Hoang KL. M. Leow ML. Liu XW. Org. Chem. Front. 2015; 2: 502
    • 4a Dangel BD. Johnson JA. Sames D. J. Am. Chem. Soc. 2001; 123: 8149
    • 4b Satoshi U. Hideko N. Angew. Chem. Int. Ed. 2008; 47: 6411
    • 4c Novak P. Correa A. Joan GD. Martin R. Angew. Chem. Int. Ed. 2011; 50: 12236
    • 4d Wei Y. Yoshikai N. Org. Lett. 2011; 13: 5504
    • 4e Yang MY. Jiang XY. Shi WJ. Zhu QL. Shi ZJ. Org. Lett. 2013; 15: 690
    • 5a Wang XS. Lu Y. Dai HX. Yu JQ. J. Am. Chem. Soc. 2010; 132: 12203
    • 5b Xiao B. Gong TJ. Liu ZJ. Liu JH. Luo DF. Xv J. Liu L. J. Am. Chem. Soc. 2011; 133: 9250
    • 6a Li KL. Du ZB. Guo CC. Chen QY. J. Org. Chem. 2009; 74: 3286
    • 6b Sedelmeier J. Lima F. Litzler A. Martin B. Venturoni F. Org. Lett. 2013; 15: 5546
    • 6c Liu Q. Zhang XH. He Y. Hussain MI. Hu W. Xiong Y. Zhu XM. Tetrahedron 2016; 72: 5749
    • 7a Liang ZD. Hou WZ. Du YF. Zhang YL. Pan Y. Mao D. Zhao K. Org. Lett. 2009; 11: 4978
    • 7b Jovanovic L. Sefkow M. Org. Lett. 2010; 12: 1976
    • 7c Tang LN. Pang YL. Yan Q. Shi LQ. Huang JH. Du YF. Zhao K. J. Org. Chem. 2011; 76: 2744
    • 7d Hu XH. Pu XQ. Liu R. Cui CX. Yang J. Yang XJ. RSC Adv. 2016; 6: 58613
    • 8a Cheng XF. Li Y. Su YM. Yin F. Wang JY. Sheng J. Vora HU. Wang XS. Yu JQ. J. Am. Chem. Soc. 2013; 135: 1236
    • 8b Li Y. Ding YJ. Wang JY. Sun YM. Wang XS. Org. Lett. 2013; 15: 2574
    • 9a Gallardo-Donaire J. Martin R. J. Am. Chem. Soc. 2013; 135: 9350
    • 9b Wang Y. Gulevich AV. Gevorgyan V. Chem. Eur. J. 2013; 19: 15836
  • 10 Dai JJ. Xu WT. Wu YD. Zhang WM. Gong Y. He XP. Zhang XQ. Xu HJ. J. Org. Chem. 2015; 80: 911
    • 11a Zhao SX. Yun RQ. Chen WZ. Liu MZ. Wu HY. Org. Lett. 2015; 17: 2828
    • 11b Irastorza A. Aizpurua JM. Correa A. Org. Lett. 2016; 18: 1080
    • 12a Yamamoto K. Bruun T. Kim JY. Zhang L. Lautens M. Org. Lett. 2016; 18: 2644
    • 12b Kubiak RW. Mighion JD. Wilkerson-Hill SM. Alford JS. Yoshidomi T. Davies HM. L. Org. Lett. 2016; 18: 3118
    • 12c Wang WG. Wei F. Ma YD. Tung CH. Xu ZH. Org. Lett. 2016; 18: 4158
    • 12d Lal K. Yadav P. Kumar A. Med. Chem. Res. 2016; 25: 644
    • 12e Bhardwaj M. Jamwal B. Paul S. Catal. Lett. 2016; 146: 629
    • 12f Gangaprasad D. Paul Raj J. Kiranmye T. Sasikala R. Karthikeyan K. Rani SK. Elangovan J. Tetrahedron Lett. 2016; 57: 3105
    • 13a Hashidzume A. Nakamura T. Sato T. Polymer 2013; 54: 3448
    • 13b Sharghi H. Shiri P. Aberi M. Mol. Diversity 2014; 18: 559
    • 13c Singh G. Arora A. Mangat SS. Singh J. Rani S. Kaur N. J. Organomet. Chem. 2015; 777: 6
    • 13d Johansson JR. Beke-Somfai T. Stalsmeden AS. Kann N. Chem. Rev. 2016; 116: 14726
    • 13e Li LJ. Ding SQ. Yang YP. Zhu AL. Fan XC. Cui MC. Chen CP. Zhang GS. Chem. Eur. J. 2016; 22: 1
    • 13f Dhamodharan P. Sathya K. Dhandapani M. J. Phys.: Condens. Matter 2017; 508: 33
    • 14a Cardoso MC. F. Rodrigues PC. Oliveira ME. I. M. Gama IL. Silva MC. B. Santos IO. Rocha DR. Pinho RT. Ferreira VF. Souza MC. B. V. Silva FC. Silva FP. Jr. Eur. J. Med. Chem. 2014; 84: 708
    • 14b Kayet A. Dey S. Pathak T. Tetrahedron Lett. 2015; 56: 5521
    • 14c Gangaprasad D. Raj JP. Kiranmye T. Sadik SS. Elangovan J. RSC Adv. 2015; 5: 63473
    • 14d Wen YN. Liu NN. Zhang ZF. Chen X. Yuan WY. Zhang QS. Wu QP. Chin. J. Chem. 2015; 25: 348
    • 14e Thomas J. Goyvaerts V. Liekens S. Dehaen W. Chem. Eur. J. 2016; 22: 9966
    • 15a Emileh A. Duffy C. Holmes AP. Bastian AR. Aneja R. Tuzer F. Rajagopal S. Li H. Abrams CF. Chaiken IM. Biochemistry 2014; 53: 3403
    • 15b Testa C. Scrima M. Grimaldi M. Ursi AM. O. Dirain ML. Nadege LG. Singh A. Carrie HL. Chorev M. Rovero P. Papini AM. J. Med. Chem. 2014; 57: 9424
    • 15c Zhou J. Reidy M. Reilly C. Jarikote DV. Negi A. Samali A. Szegezdi E. Murphy PV. Org. Lett. 2015; 17: 1672
    • 16a Chuprakov S. Chernyak N. Dudnik AS. Gevorgyan V. Org. Lett. 2007; 9: 2333
    • 16b Lau YH. Rutledge PJ. Watkinson M. Todd MH. Chem. Soc. Rev. 2011; 40: 2848
    • 16c Ramachary DB. Shashank AB. Karthik S. Angew. Chem. Int. Ed. 2014; 53: 10420
    • 16d Lee DJ. Yoo EJ. Org. Lett. 2015; 17: 1830
    • 16e Monasterio Z. Irastorza A. Miranda JI. Aizpurua JM. Org. Lett. 2016; 18: 2511
    • 17a Shi S. Kuang C. J. Org. Chem. 2014; 79: 6105
    • 17b Shi S. Liu W. Hea P. Kuang C. Org. Biomol. Chem. 2014; 12: 3576
    • 17c Tian Q. Chen X. Liu W. Wang Z. Shi S. Kuang C. Org. Biomol. Chem. 2013; 11: 7830
    • 17d Wang Z. Tian Q. Yu X. Kuang C. Adv. Synth. Catal. 2014; 356: 961
    • 17e Liu W. Li Y. Xu B. Kuang C. Org. Lett. 2013; 15: 2342
    • 17f Tian Q. Hea P. Kuang C. Org. Biomol. Chem. 2014; 12: 7474
    • 18a Ackermann L. Jeyachandran R. Potukuchi HK. Novak P. Buttner L. Org. Lett. 2010; 12: 2056
    • 18b Chen CY. Yang CH. Hu WP. Vandavasi JK. Chunga MI. Wang JJ. RSC Adv. 2013; 3: 2710
    • 18c Liu ZQ. Zhu DQ. Luo BL. Zhang NY. Liu Q. Hu YM. Pi RB. Huang P. Wen SJ. Org. Lett. 2014; 16: 5600
    • 18d Kavoosi S. Rayala R. Walsh B. Barrios M. Gonzalez WG. Miksovska J. Mathivathanan L. Raptis RG. Wnuk SF. Tetrahedron Lett. 2016; 57: 4364
    • 18e Singh MK. Akula HK. Satishkumar S. Stahl L. Lakshman MK. ACS Catal. 2016; 6: 1921
    • 18f Wang Z. Li B. Zhang XY. Fan XS. J. Org. Chem. 2016; 81: 6357
    • 18g Kumar A. Shinde SS. Tiwari DK. Sridharc B. Likhar PR. RSC Adv. 2016; 6: 43638
  • 19 Wang ZC. Kuang CX. Adv. Synth. Catal. 2014; 356: 1549
    • 20a Zhang Y.-J. Abe T. Tanaka T. Yang C.-R. Kouno I. J. Nat. Prod. 2001; 64: 1527
    • 20b Orabi MA. A. Taniguchi S. Yoshimura M. Yoshida T. Kishino K. Sakagami H. Hatano T. J. Nat. Prod. 2010; 73: 870
    • 20c Pfundstein B. El Desouky SK. Hull WE. Haubner R. Erben G. Owen RW. Phytochemistry 2010; 71: 1132
    • 20d Disadee W. Mahidol C. Sahakitpichan P. Sitthimonchai S. Ruchirawat S. Kanchanapoom T. Phytochemistry 2012; 74: 115
    • 20e Bringmann G. Gulder T. Gulder TA. M. Breuning M. Chem. Rev. 2011; 111: 563
  • 21 General Procedure for the Synthesis of 2 1,4-Disubstituted 1,2,3-triazoles 1 (0.3 mmol), AgNO3 (5.1 mg, 0.03 mmol), KOAc (88.3 mg, 0.9 mmol), (NH4)2S2O8 (205.4 mg, 0.9 mmol), and EtOAc–H2O (1:1 v/v, 12 mL) were sequentially added to a 25 mL flask. Then the flask was stirred at r.t. for 24 h. After consumption of the 1,4-disubstitued 1,2,3-triazoles monitored by TLC analysis, H2O (15 mL) was added to the mixture and extracted with EtOAc (3 × 25 mL). The combined organic layer was washed with brine (3 × 5 mL), dried with Na2SO4, and concentrated under reduced pressure to afford the crude product. Purification by column chromatography on silica gel with EtOAc–PE (1:8) afforded the desired product 2. 3-(p-Tolyl)-5H-benzo[d][1,2,3]triazolo[5,1-b][1,3]oxazin-5-one (2b) White solid (64 mg, 78% yield); mp 166–168 °C. 1H NMR (400 MHz, CDCl3): δ = 8.26 (dd, J = 13.4, 4.9 Hz, 2 H), 7.91 (ddd, J = 12.3, 9.4, 4.7 Hz, 3 H), 7.62–7.51 (m, 1 H), 7.24–7.18 (m, 2 H), 2.33 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.9, 141.0, 138.3, 137.7, 135.4, 131.5, 129.6, 128.8, 128.7, 125.5, 125.4, 115.5, 110.2, 21.3. ESI-HRMS: m/z [M + H+] calcd for C16H12N3O2: 278.0930; found: 278.0932. IR (KBr): 3672, 3060, 2960, 1760, 1600, 1482, 1379, 1263, 1095, 1010, 803, 754, 669, 450 cm–1. 3-Pentyl-5H-benzo[d][1,2,3]triazolo[5,1-b][1,3]oxazin-5-one (2r) White solid (47 mg, 61% yield); mp 59–61 °C. 1H NMR (400 MHz, CDCl3): δ = 8.31 (dd, J = 5.1, 3.6 Hz, 2 H), 8.03–7.90 (m, 1 H), 7.67–7.56 (m, 1 H), 2.86–2.71 (m, 2 H), 1.82–1.73 (m, 2 H), 1.41–1.35 (m, 4 H), 0.91 (dd, J = 9.4, 4.6 Hz, 3 H). 13CNMR (100 MHz, CDCl3): δ = 156.3, 142.0, 137.5, 135.4, 131.4, 129.7, 128.4, 115.2, 110.3, 31.3, 28.0, 23.6, 22.3, 13.9. ESI-HRMS: m/z [M + H+] calcd for C14H16N3O2: 258.1243; found: 258.1245. IR (KBr): 3666, 2927, 2861, 1774, 1693, 1613, 1517, 1448, 1379, 1228, 1144, 1003, 754, 678 cm–1.