Synlett 2017; 28(18): 2505-2508
DOI: 10.1055/s-0036-1588529
letter
© Georg Thieme Verlag Stuttgart · New York

Nonenzymatic Biomimetic Synthesis of Black Tea Pigment Theaflavins

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Ryosuke Oowatashi
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Yoshinori Saito
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
,
Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan   Email: y-matsuo@nagasaki-u.ac.jp   Email: t-tanaka@nagasaki-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Numbers JP16K07741 and JP17K08338
Further Information

Publication History

Received: 07 June 2017

Accepted after revision: 04 July 2017

Publication Date:
11 August 2017 (online)


Abstract

Theaflavins are reddish-orange black tea pigments with a benzotropolone chromophore, and their various biological activities have been reported. Theaflavins are produced by oxidative coupling between catechol-type and pyrogallol-type catechins via bicyclo[3.2.1]octane-type intermediates. In this study, a new method for nonenzymatic biomimetic synthesis of theaflavins was developed using the DPPH radical as an oxidizing agent.

Supporting Information

 
  • References and Notes


    • For reviews of plant polyphenols, see:
    • 1a Crozier A. Jaganath IB. Clifford MN. Nat. Prod. Rep. 2009; 26: 1001
    • 1b Quideau S. Deffieux D. Douat-Casassus C. Pouységu L. Angew. Chem. Int. Ed. 2011; 50: 586
    • 1c Cheynier V. Phytochem. Rev. 2012; 11: 153
  • 2 Engelhardt UH. Chemistry of Tea. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Reedijk J. Elsevier; Waltham, MA: 2013. DOI: 10.1016/B978-0-12-409547-2.02784-0

    • For reviews of the chemistry of black tea polyphenols, see:
    • 3a Haslam E. Phytochemistry 2003; 64: 61
    • 3b Drynan JW. Clifford MN. Obuchowicz J. Kuhnert N. Nat. Prod. Rep. 2010; 27: 417
    • 3c Tanaka T. Matsuo Y. Kouno I. Int. J. Mol. Sci. 2010; 11: 14
    • 3d Matsuo Y. Tanaka T. In Recent Advances in Polyphenol Research . Vol. 5. Yoshida K. Cheynier V. Quideau S. Wiley-Blackwell; Chichester: 2017: 67
    • 4a Takino Y. Imagawa H. Horikawa H. Tanaka A. Agric. Biol. Chem. 1964; 28: 64
    • 4b Takino Y. Imagawa H. Agric. Biol. Chem. 1964; 28: 255
    • 4c Takino Y. Ferretti A. Flanagan V. Gianturco M. Vogel M. Tetrahedron Lett. 1965; 6: 4019
    • 4d Collier PD. Bryce T. Mallows R. Thomas PE. Frost DJ. Korver O. Wilkins CK. Tetrahedron 1973; 29: 125
    • 5a Sun L. Warren FJ. Netzel G. Gidley MJ. J. Funct. Foods 2016; 26: 144
    • 5b Hara Y. Honda M. Agric. Biol. Chem. 1990; 54: 1939
    • 6a Matsui T. Tanaka T. Tamura S. Toshima A. Tamaya K. Miyata Y. Tanaka K. Matsumoto K. J. Agric. Food Chem. 2007; 55: 99
    • 6b Honda M. Hara Y. Biosci., Biotechnol., Biochem. 1993; 57: 123
    • 7a Nakai M. Fukui Y. Asami S. Toyoda-Ono Y. Iwashita T. Shibata H. Mitsunaga T. Hashimoto F. Kiso Y. J. Agric. Food Chem. 2005; 53: 4593
    • 7b Kusano R. Andou H. Fujieda M. Tanaka T. Matsuo Y. Kouno I. Chem. Pharm. Bull. 2008; 56: 266
    • 8a Aneja R. Odoms K. Denenberg AG. Wong HR. Crit. Care Med. 2004; 32: 2097
    • 8b Zu M. Yang F. Zhou W. Liu A. Du G. Zheng L. Antiviral Res. 2012; 94: 217
  • 9 Yanase E. Sawaki K. Nakatsuka S. Synlett 2005; 2661
    • 10a Verloop AJ. W. Gruppen H. Bisschop R. Vincken J.-P. Food Chem. 2016; 196: 1197
    • 10b Yabuki C. Yagi K. Nanjo F. Process Biochem. 2017; 55: 61
    • 10c Narai-Kanayama A. Kawashima A. Uchida Y. Kawamura M. Nakayama T. J. Mol. Catal. B: Enzym. 2017; DOI: 10.1016/j.molcatb.2017.03.009.
    • 10d Jhoo J.-W. Sang S. Wei G.-J. Lee TC. Rosen RT. Ho C.-T. J. Food Lipids 2004; 11: 89
    • 10e Lei S. Xie M. Hu B. Zhou L. Sun Y. Saeeduddin M. Zhang H. Zeng X. Int. J. Biol. Macromol. 2017; 94: 709
    • 10f Teng J. Gong Z. Deng Y. Chen L. Li Q. Shao Y. Lin L. Xiao W. LWT – Food Sci. Technol. 2017; 84: 263
  • 11 Sang S. Lambert JD. Tian S. Hong J. Hou Z. Ryu J.-H. Stark RE. Rosen RT. Huang M.-T. Yang CS. Ho C.-T. Bioorg. Med. Chem. 2004; 12: 459
    • 12a Tanaka T. Mine C. Inoue K. Matsuda M. Kouno I. J. Agric. Food Chem. 2002; 50: 2142
    • 12b Van Der Westhuizen M. Steenkamp L. Steenkamp P. Apostolides Z. Biocatal. Biotransform. 2015; 33: 298
  • 13 Takemoto M. Takemoto H. Sakurada A. Tetrahedron Lett. 2014; 55: 5038
  • 14 Yoruk R. Marshall MR. J. Food Biochem. 2003; 27: 361
  • 15 Qi X. Fitoterapia 2010; 81: 205
  • 16 Yanase E. Matsumoto E. Shinoda Y. Nakatsuka S. ITE Lett. Batteries, New Technol. Med. 2005; 6: 232
    • 17a Kawabe Y. Aihara Y. Hirose Y. Sakurada A. Yoshida A. Inai M. Asakawa T. Hamashima Y. Kan T. Synlett 2013; 24: 479
    • 17b Asakawa T. Kawabe Y. Yoshida A. Aihara Y. Manabe T. Hirose Y. Sakurada A. Inai M. Hamashima Y. Furuta T. Wakimoto T. Kan T. J. Antibiot. 2016; 69: 299
  • 18 Sawai Y. Sakata K. J. Agric. Food Chem. 1998; 46: 111

    • The kinetic and mechanistic studies for the oxidation of catechol derivatives including 5 and 9 by DPPH radical were also reported:
    • 19a Suzuki M. Mori M. Nanjo F. Hara Y. In Caffeinated Beverages, Health Benefits, Physiological Effects, and Chemistry . Parliment TH. Ho CT. Schieberle P. Vol. 754. ACS Symposium Series, American Chemical Society; Washington, DC: 2000: 146
    • 19b Goupy P. Dufour C. Loonis M. Dangles O. J. Agric. Food Chem. 2003; 51: 615
    • 19c Dangles O. Fargeix G. Dufour C. J. Chem. Soc., Perkin Trans. 2 2000; 1653
    • 19d Chen W.-L. Li W.-S. Fu P.-J. Yeh A. Int. J. Chem. Kinet. 2011; 43: 147
    • 19e Lin L.-M. Li W.-S. Chen W.-L. Yeh A. J. Chin. Chem. Soc. 2010; 57: 883
  • 20 Currently, we are investigating the structure of the bicyclo[3.2.1]octane intermediate by converting it into a stable derivative. The details will be reported in the near future.
  • 21 Experimental Procedure for Synthesis of Theaflavin (1) DPPH (543 mg, 1.4 mmol) was added to an acetone solution (100 mL) of epicatechin (5, 200 mg, 0.69 mmol). After stirring for 1 h at r.t., an acetone solution (50 mL) of epigallocatechin (7, 106 mg, 0.35 mmol) was added to the reaction mixture and stirred for 15 min at r.t. Then, water (150 mL) was added to the reaction mixture and stirred for 15 min. The reaction mixture was concentrated in vacuo, and the residue was applied to a column of MCI-gel CHP20P (3.0 × 24 cm; 0–80% aq MeOH, 10% stepwise, each 200 mL) to afford a crude theaflavin (1) fraction along with 5 (154 mg, 77%). The crude fraction of 1 was purified with Sephadex LH-20 (3.0 × 20 cm; 40–100% aq MeOH, 10% stepwise, each 200 mL) to afford 1 4c,d,11,22 (91.3 mg, 0.16 mmol, 47% from 7) and theanaphthoquinone (10)23 (2.9 mg, 0.0054 mmol, 1.6% from 7). Analytical Data for Theaflavin (1) Reddish-orange amorphous powder, [α]D 25 –234 (c 0.105, MeOH). FAB-MS: m/z = 565 [M + H]+, 587 [M + Na]+. HRMS–FAB: m/z calcd for C29H25O12: 565.1346; found: 565.1340 [M + H]+. IR: 3406, 2935, 1627, 1604, 1518, 1470, 1419, 1310, 1227 cm–1. UV (MeOH): λmax (log ε) = 462 (3.49), 378 (3.90), 267 (4.27). 1H NMR (400 MHz, acetone-d 6 + D2O, 95:5): δ = 8.00 (s, H-g), 7.93 (s, H-e), 7.53 (s, H-c), 6.04 (d, J = 2.2 Hz, H-6′), 6.02 (d, J = 2.4 Hz, H-6), 5.99 (d, J = 2.2 Hz, H-8′), 5.95 (d, J = 2.4 Hz, H-8), 5.69 (s, H-2′), 4.98 (s, H-2), 4.45 (m, H-3′), 4.36 (m, H-3), 2.95 (dd, J = 16.8, 4.4 Hz, H-4′a), 2.89 (dd, J = 16.8, 4.4 Hz, H-4a), 2.80 (dd, J = 16.8, 2.3 Hz, H-4b), 2.77 (br d, J = 16.8 Hz, H-4′b). 13C NMR (100 MHz, acetone-d 6 + D2O, 95:5): δ = 185.1 (C-a), 157.8, 157.7, 157.6, 157.5 (C-5, 7, 5′, 7′), 157.0 (C-8′a), 156.5 (C-8a), 154.6 (C-b), 150.4 (C-i), 146.1 (C-h), 135.0 (C-d), 131.7 (C-f), 128.6 (C-k), 126.9 (C-e), 123.9 (C-g), 121.7 (C-j), 118.9 (C-c), 99.8 (C-4′a), 99.3 (C-4a), 96.5 (2 C, C-6, 6′), 95.6 (C-8′), 95.3 (C-8), 81.2 (C-2), 76.6 (C-2′), 66.2 (C-3), 65.0 (C-3′), 29.5 (C-4′), 29.2 (C-4).
    • 22a Davis AL. Cai Y. Davies AP. Magn. Reson. Chem. 1995; 33: 549
    • 22b Nonaka G. Hashimoto F. Nishioka I. Chem. Pharm. Bull. 1986; 34: 61
    • 23a Tanaka T. Betsumiya Y. Mine C. Kouno I. Chem. Commun. 2000; 1365
    • 23b Jhoo J.-W. Lo C.-Y. Li S. Sang S. Ang CY. W. Heinze TM. Ho C.-T. J. Agric. Food Chem. 2005; 53: 6146
  • 24 Balentine DA. Wiseman SA. Bouwens LC. M. Crit. Rev. Food Sci. Nutr. 1997; 37: 693
    • 25a Bentley R. Nat. Prod. Rep. 2008; 25: 118
    • 25b Liu N. Song W. Schienebeck CM. Zhang M. Tang W. Tetrahedron 2014; 70: 9281
    • 26a Nierenstein M. Swanton A. Biochem. J. 1944; 38: 373
    • 26b Barltrop JA. Nicholson JS. J. Chem. Soc. 1948; 116
  • 27 Arpin N. Favre-Bonvin J. Steglich W. Phytochemistry 1974; 13: 1949
  • 28 Klostermeyer D. Knops L. Sindlinger T. Polborn K. Steglich W. Eur. J. Org. Chem. 2000; 603
  • 29 Kerschensteiner L. Löbermann F. Steglich W. Trauner D. Tetrahedron 2011; 67: 1536
    • 30a Mesa-Siverio D. Estévez-Braun A. Ravelo ÁG. Murguia JR. Rodríguez-Afonso A. Eur. J. Org. Chem. 2003; 4243
    • 30b Fukui N. Ohmori K. Suzuki K. Helv. Chim. Acta 2012; 95: 2194