Synlett 2017; 28(17): 2311-2314
DOI: 10.1055/s-0036-1588507
letter
© Georg Thieme Verlag Stuttgart · New York

InBr3-Catalyzed Synthesis of Aryl 1,2-trans-Thio(seleno)glycosides

Teng Ma
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
,
Changwei Li
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
,
Haijing Liang
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
,
Zhaoyan Wang
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
,
Lan Yu*
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
,
Weihua Xue*
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: xuewh@lzu.edu.cn
› Author Affiliations
We gratefully acknowledge financial support from the National Science Foundation of China (21402075, 51501080 and 21675070) and the Fundamental Research Funds for the Central Universities, Lanzhou University (lzujbky-2015-307, lzujbky-2016-146, and lzujbky-2017-62)
Further Information

Publication History

Received: 25 May 2017

Accepted after revision: 23 June 2017

Publication Date:
20 July 2017 (online)


Abstract

InBr3 is demonstrated to be an efficient catalyst for reactions of fully acetated aldoses with aryl mercaptans or selenophenol at room temperature, rapidly furnishing the corresponding thioglycosides or selenoglycosides with exclusively 1,2-trans-stereoselectivity. This bromide is an air- and moisture-stable Lewis acid and therefore the reactions can be performed in air atmosphere making the procedure simple to perform.

Supporting Information

 
  • References and Notes

  • 1 Lian G. Zhan X. Yu B. Carbohydr. Res. 2015; 403: 12
  • 2 Hoeksema H. Bannister B. Birkenmeyer RD. Kagan F. Magerlein BJ. Mackellar FA. Schroeder W. Slomp G. Herr RR. J. Am. Chem. Soc. 1964; 86: 4223
  • 3 Nicolau KC. Randall JL. Furst GT. J. Am. Chem. Soc. 1985; 107: 5556
  • 4 Sugiyama S. Diakur JM. Org. Lett. 2000; 2: 2713
  • 5 Tsegay S. Williams RJ. Williams SJ. Carbohydr. Res. 2012; 357: 16

    • For Pd-catalyzed thioglycosylation, see:
    • 6a Brachet E. Brion J.-D. Messaoudi S. Alami M. Adv. Synth. Catal. 2013; 355: 477
    • 6b Brachet E. Brion J.-D. Alami M. Messaoudi S. Adv. Synth. Catal. 2013; 355: 2627
    • 6c Bruneau A. Roche M. Hamze A. Brion J.-D. Alami M. Messaoudi S. Chem. Eur. J. 2015; 21: 1
  • 7 For Ni-catalyzed thioglycosylation, see: Brachet E. Brion J.-D. Messaoudi S. Alami MA. Chem. Eur. J. 2013; 19: 15276
  • 8 For Cu-catalyzed thioglycosylation, see: Yuan X. Kou Y. Yu L. Zhang Z.-X. Xue W. Org. Chem. Front. 2015; 2: 1604
  • 9 Dasgupta F. Singh PP. Srivastava HC. Carbohydr. Res. 1980; 80: 346
  • 10 Contour M.-O. Defaye J. Little M. Wong E. Carbohydr. Res. 1989; 193: 283
  • 11 Das SK. Roy N. Carbohydr. Res. 1996; 296: 275
  • 12 Tai C.-A. Kulkarni SS. Hung S.-C. J. Org. Chem. 2003; 68: 8719
  • 13 Weng S.-S. Lin Y.-D. Chen C.-T. Org. Lett. 2006; 8: 5633
  • 14 Weng S.-S. Tetrahedron Lett. 2009; 50: 6414
  • 15 Mehta S. Pinto BM. J. Org. Chem. 1993; 58: 3269
    • 16a Mukherjee C. Tiwari P. Misra AK. Tetrahedron Lett. 2006; 47: 441
    • 16b Crich D. Suk D.-H. Sun S. Tetrahedron: Asymmetry 2003; 14: 2861
  • 17 For a review on the application and nature of indium reagents, see: Shen Z.-L. Wang S.-Y. Chok Y.-K. Xu Y.-H. Loh T.-P. Chem. Rev. 2013; 113: 271

    • For selected examples, see:
    • 18a Sakai N. Annaka K. Konakahara T. Org. Lett. 2004; 6: 1527
    • 18b Takita R. Yakura K. Ohshima T. Shibasaki M. J. Am. Chem. Soc. 2005; 127: 13760
    • 18c Harada S. Takita R. Ohshima T. Matsunaga S. Shibasaki M. Chem. Commun. 2007; 948
    • 18d Wang P. Song S. Miao Z. Yang G. Zhang A. Org. Lett. 2013; 15: 3852
  • 19 InBr3-Catalyzed Reaction of Fully Acetylated Aldose with Aryl Thiol; Typical Procedure: To a solution of β-ribofuranose tetraacetate (0.1 mmol) and 4-fluorobenzenethiol (0.12 mmol) in CH2Cl2 (2 mL) was added InBr3 (0.01 mmol) and the reaction mixture was stirred for 2 h at room temperature. Upon completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the resulting residue was subjected to flash chromatograph (petroleum ether–EtOAc, 4:1) to afford the desired product 1j. Yield: 98%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.52 (dd, J = 8.8, 5.2 Hz, 2 H), 7.04 (t, J = 8.7 Hz, 2 H), 5.18–5.24 (m, 3 H), 4.23–4.29 (m, 2 H), 4.10 (dd, J = 12.8, 5.4 Hz, 1 H), 2.11 (s, 3 H), 2.08 (s, 3 H), 2.05 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.4, 169.5, 169.3, 164.4, 161.9, 136.3, 126.3, 116.1, 88.0, 80.1, 73.6, 71.3, 63.3, 20.7, 20.5. HRMS (ESI): m/z [M +H]+ calcd for C17H20FO7S: 387.0914; found: 387.0917.
  • 20 InBr3-Catalyzed Reaction of Fully Acetylated Aldose with Phenylselenol; Typical Procedure: To a solution of β-ribofuranose tetraacetate (0.1 mmol) and phenylselenol (0.12 mmol) in CH2Cl2 (2 mL) was added InBr3 (0.01 mmol) and the reaction mixture was stirred for 1.5 h at room temperature. Upon completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure and the resultant residue was rapidly eluted through a short column of silica gel (ethyl acetate–petroleum ether, 30%) to give the desired product 2c. Yield: 97%; colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 6.4 Hz, 2 H), 7.38–7.27 (m, 3 H), 5.55 (d, J = 4.0 Hz, 1 H), 5.43–5.38 (m, 1 H), 5.26 (t, J = 5.2 Hz, 1 H), 4.32–4.23 (m, 2 H), 4.12–4.05 (m, 1 H), 2.08 (s, 6 H), 2.07 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.5, 169.6, 169.4, 135.6, 129.2, 128.6, 83.2, 80.0, 75.5, 71.2, 63.2, 20.8, 20.6, 20.5. HRMS (ESI): m/z [M +H]+ calcd for C17H21O7Se: 417.0452; found: 417.0454.