Synthesis 2017; 49(08): 1808-1815
DOI: 10.1055/s-0036-1588381
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Five-Membered Spiropyrazolones via N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Annulations

Sun Li
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
,
Lei Wang
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
,
Pankaj Chauhan
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
,
Anssi Peuronen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland   Email: enders@rwth-aachen.de
,
Kari Rissanen
b   Department of Chemistry, Nanoscience Center, University of Jyvaskyla, 40014 JYU, Finland   Email: enders@rwth-aachen.de
,
Dieter Enders*
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
› Author Affiliations
Further Information

Publication History

Received: 25 November 2016

Accepted: 29 November 2016

Publication Date:
20 December 2016 (online)

 


Abstract

A new synthetic strategy for the asymmetric synthesis of five-membered spiropyrazolones via N-heterocyclic carbene-catalyzed [3+2] annulations employing enals and unsaturated pyrazolones as substrates has been developed. The new protocol allows the flexible variation of all four substituents of the pharmaceutically important spiropyrazolones in moderate to very good yields and in most cases with excellent diastereoselectivities and good to excellent enantioselectivities.


#

Since the first enantioselective carbon–carbon bond formations catalyzed by N-heterocyclic carbenes (NHCs) in the case of the benzoin condensation reported by Sheehan and Hunnemann in 1966,[1a] and the first enantioselective Stetter reaction developed by our group in the late eighties,[1b] [c] the field of asymmetric NHC-organocatalysis[2] has grown rapidly being now an important chapter of Lewis-base organocatalysis.

In recent years, pyrazolones and related derivatives turned out to display a wide range of biological and pharmaceutical activities,[3] especially the spiropyrazolone derivatives. For example, spiropyrazolone A shows anticancer activity,[4a] whereas spiro compounds B and C possess phosphodiesterase inhibitor activity (Figure [1]).[4b] [c] Many organocatalytic asymmetric methods have been developed for the asymmetric synthesis of this important heterocyclic core structure, owing to the wide existence of the pyrazolone scaffold in related bioactive compounds.[5] Recently, NHCs have also been employed for the asymmetric synthesis of spiropyrazolone derivatives. In this context, Biju’s group reported a formal [3+3] annulation reaction of α,β-unsaturated aldehydes with α-arylidenepyrazolinones under oxidative NHC catalysis (Scheme [1, a]).[6] Very recently, our group has developed an asymmetric multicomponent one-pot synthesis of spiropyrazolones using NHC organocatalysis (Scheme [1, b]).[7] Based on our previous work, herein we report a new strategy for the asymmetric synthesis of spiropyrazolones using unsaturated pyrazolones and enals as substrates via an NHC-catalyzed [3+2] annulation reaction. This new protocol allows the flexible variation of all four substituents R1–R4 (Scheme [1, c]).

Zoom Image
Figure 1 Selected pharmaceutically active spiropyrazolones

We started our studies with the unsaturated pyrazolone 1a and cinnamaldehyde (2a) as test substrates in dichloromethane at room temperature (Table [1]). Initially, we obtained the spiropyrazolone product 3a in 45% yield with excellent diasteroselectivity when the achiral pre-catalyst 4a was employed. A series of chiral NHC pre-catalysts (Table [1], entries 2–6) was screened encouraged by the initial result and showed that the pre-catalyst 4b was the best one. The optimization studies of the bases (entries 7–13) revealed that Cs2CO3 gave the procuct 3a with the improved ee of 94% but with a 1:1 diastereomeric ratio (entry 7). When DMAP was employed as base (entry 11), the ee value was virtually the same (93%), but the reaction occurred with excellent diastereoselectivity in moderate yield. Using 4b as catalyst and DMAP as base, different solvents were screened and it turned out that DCE provided the desired product 3a in very good yield (71%), as well as with excellent diastereoselectivity (dr >20:1) and enantiomeric excess of 93% ee (entry 18).

Zoom Image
Scheme 1 Selected strategies for the asymmetric synthesis of spiropyrazolones

Table 1 Optimization of the Reaction Conditionsa

Entry

4

Solvent

Base

Yield (%)b

drc

ee (%)d

 1

4a

CH2Cl2

DBU

45

>20:1

 2

4b

CH2Cl2

DBU

49

  5:1

92

 3

4c

CH2Cl2

DBU

42

  1:1

93

 4

4d

CH2Cl2

DBU

23

>20:1

90

 5

4e

CH2Cl2

DBU

27

>20:1

88

 6

4f

CH2Cl2

DBU

15

>20:1

86

 7

4b

CH2Cl2

Cs2CO3

45

  1:1

94

 8

4b

CH2Cl2

K3PO4

24

>20:1

92

 9

4b

CH2Cl2

KOt-Bu

11

>20:1

93

10

4b

CH2Cl2

KOAc

42

>20:1

92

11

4b

CH2Cl2

DMAP

51

>20:1

93

12

4b

CH2Cl2

DABCO

39

  1:2

89

13

4b

CH2Cl2

DIPEA

20

  5:1

93

14

4b

EtOAc

DMAP

51

>20:1

88

15

4b

THF

DMAP

54

>20:1

85

16

4b

toluene

DMAP

44

>20:1

90

17

4b

1,4-dioxane

DMAP

71

>20:1

85

18

4b

DCE

DMAP

71

>20:1

93

19

4b

MeCN

DMAP

57

>20:1

89

a Reaction conditions: 1a (0.4 mmol, 1.0 equiv), 2a (0.8 mmol, 2.0 equiv), 4 (0.04 mmol, 10 mol%), base (0.4 mmol, 1.0 equiv), solvent (2 mL) at r.t. for 12 h.

b Yield 3a after column chromatography.

c The dr values were determined by 1H NMR analysis of the crude reaction mixture.

d The ee values were determined by HPLC on a chiral stationary phase.

With the optimized reaction conditions in hand, the scope of the reaction substrates was investigated. First, a variety of enals were tested and the unsubstituted cinnamaldehyde worked very well under the standard conditions giving the product 3a. When enals with electron-donating and electron-withdrawing groups at the para-position were used, the spirocyclopentane pyrazolones 3b and c were obtained in moderate to good yields and with very good diastereo- and enantioselectivities. Other enal derivatives, bearing a 2-furyl and 1-propenyl group as R4 were also tolerated and gave the desired products 3d and e in moderate to good yields and with very good to excellent ee and dr values (Scheme [2]).

The relative and absolute configuration of the spiropyrazolone 3p was determined by X-ray crystal structure analysis (Figure [2]),[8] and the configuration of all other products 3 was assigned accordingly.

Zoom Image
Scheme 2 Substrate scope of the spiropyrazolones (variation of the enals)

Subsequently, the variation of the unsaturated pyrazolones 1 was investigated. Substitution at the otho-position as well as para-position of the phenyl ring of R1 resulted in the smooth conversion to the spiropyrazolones 3f,g in good yields and with excellent ee and dr. Moreover, instead of the phenyl ring, the indole group, 2-furyl group, and a 1-propenyl group furnished the desired products 3hj in good yields and with very good to excellent ee values. The substrate scope was further evaluated by screening different substituents R2 and R3. Various pyrazolones with aliphatic R2-substituents afforded the corresponding spiropyrazolone products 3km in good yields and with enantioselectivities under virtually complete diastereoselectivities (dr ≥20:1). This was also true for the variation of the N-substituent R3 (3nq). Only in the case of R2 = Me and R3 = p-chlorophenyl, a lower yield and stereoselectivity was observed (Scheme [3]).

Zoom Image
Scheme 3 Extended substrate scope of the spiropyrazolones

A plausible catalytic cycle of the NHC-catalyzed [3+2] annulation of enals and unsaturated pyrazolones is depicted in Scheme [4]. First, the deprotonation of the pre-catalyst with DMAP generates the free NHC-catalyst, which react with the enals 2 to form the Breslow intermediate I. This homoenolate equivalent then undergoes a Michael addition with the pyrazolones 1 to afford the acyl azolium intermediate II, which cyclizes to the spiropyrazolone product 3 and returns the catalyst (Scheme [4]).

In summary, the asymmetric NHC-catalyzed [3+2] annulation of enals and unsaturated pyrazolones affords the corresponding spirocyclpentane pyrazolones in moderate to very good yields (up to 86%), in most cases with excellent diastereoselectivities (dr >20:1) and very good to excellent enantioselectivities (up to 95% ee) with broad substrate scope. The new variant allows the flexible variation of all four substituents as well.

Zoom Image
Figure 2 X-ray crystal structure of the spiropyrazolone 3p
Zoom Image
Scheme 4 Proposed catalytic cycle of the asymmetric spiropyrazolone synthesis

Unless otherwise noted, all commercially available compounds were used without further purification. Anhyd CH2Cl2 was purified by distillation over CaH2. The products were purified by column chromatography on Merck silica gel 60, particle size 0.040–0.063 mm (230–240 mesh, flash). For TLC analysis, Merck precoated TLC plates (silica gel 60 GF254 0.25 mm) were used. Visualization of the developed TLC plates was performed with ultraviolet irradiation (254 nm). Optical rotation values were measured on a PerkinElmer 241 polarimeter. High-resolution mass spectra (HRMS) were acquired on a ThermoFisher Scientific LTQ-Orbitrap XL. IR spectra (cm–1) were taken on a PerkinElmer Spectrum 100 FT-IR Spectrometer. 1H NMR and 13C NMR spectra were recorded at r.t. on Inova 400 or Agilent VNMRS 600 spectrometers. Chemical shifts (δ) are given in ppm relative to solvent residual peak (CDCl3, δ = 7.26) as external standard. Standard abbreviations for denoting multiplicities were used. Analytical HPLC was performed on a Hewlett-Packard 1100 Series instrument using chiral stationary phases [Daicel IC, Daicel AD, Daicel IA, Merck (S,S)-Whelk 01]. The melting point was obtained with a LLG MPM-H2 apparatus. The carbene catalysts 4af,[9] the unsaturated pyrazolones[10] and the corresponding cinnamaldehydes[11] were prepared according to literature procedure. The racemic samples of the spiropyrazolones 3 were prepared by using the racemic pre-catalyst 4a with DMAP.


#

Spiropyrazolones; General Procedure

A dried and argon-filled Schlenk tube was charged with the unsaturated pyrazolone 1 (0.4 mmol, 1.0 equiv) and triazolium salt 4b (0.04 mmol, 10 mol%) in anhydrous 1,2-dichloroethane (2 mL). Subsequently, the α,β-unsaturated aldehyde 2 (0.8 mmol, 2.0 equiv) and DMAP (0.4 mmol, 1.0 equiv) were introduced. The resulting mixture was stirred at r.t. for 12 h, and the reaction was completed as monitored by TLC. After purification by column chromatography on silica gel (pentane/EtOAc, 15:1), the desired spirocyclopentane pyrazolones 3 were obtained as yellow oils (3ao,q,r) or as a colorless solid (3p).


#

(5S,8S,9R)-4-(tert-Butyl)-2,8-diphenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3a)

Yield: 131 mg (71%); yellow oil.

The analytical and spectroscopic data were in accordance with the previously reported values.[7]


#

(5S,8S,9R)-4-(tert-Butyl)-8-(4-methoxyphenyl)-2-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3b)

Compound 3b was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 134 mg (68%); yellow oil; [α]D 27 +264.6 (c = 0.5, CHCl3).

HPLC: Chiralpak IB, n-heptane/i-PrOH (9:1), 1.0 mL/min, t R (minor) = 5.16 min, t R (major) = 7.23 min; T = 30 °C; 95% ee.

IR (ATR): 3363, 2969, 2320, 1740, 1607, 1496, 1367, 1220, 1035, 948, 852, 746, 682 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.89 (dd, J = 8.9, 1.1 Hz, 2 H, ArH), 7.40 (dd, J = 8.6, 7.3 Hz, 2 H, ArH), 7.26 (d, J = 8.6 Hz, 2 H, ArH), 7.23–7.16 (m, 6 H, ArH), 6.91 (d, J = 8.7 Hz, 2 H, ArH), 6.20–6.19 (m, 2 H, CH=CH), 4.30 (td, J = 11.7, 8.4 Hz, 1 H, CHCH=CH), 3.87–3.83 (m, 1 H, CHCH2), 3.80 (s, 3 H, OCH3), 3.17 (dd, J = 19.3, 8.4 Hz, 1 H, CHHCO), 2.82 (dd, J = 19.3, 12.2 Hz, 1 H, CHHCH), 1.40 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ = 205.6, 168.5, 165.8, 158.7, 137.6, 136.2, 135.0, 131.8, 128.8 (2 C), 128.4 (2 C), 127.8, 126.4 (2 C), 125.4, 123.9, 119.3 (2 C), 114.3 (2 C), 75.7, 55.5, 55.3, 46.0, 43.8, 36.3, 29.5 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C32H33N2O3: 493.2485; found: 493.2480.


#

(5S,8S,9R)-4-(tert-Butyl)-8-(4-chlorophenyl)-2-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3c)

Compound 3c was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 115 mg (58%); yellow oil; [α]D 27 +263.3 (c = 0.5, CHCl3).

HPLC: Chiralpak IB, n-heptane/EtOH (9:1), 1.0 mL/min, t R (minor) = 4.34 min, t R (major) = 5.12 min; T = 30 °C; 94% ee.

IR (ATR): 3461, 2966, 2320, 1742, 1596, 1490, 1369, 1297, 1203, 1088, 960, 826, 749, 686 cm–1.

1H NMR (600 MHz, CDCl3): δ (major) = 7.89 (dd, J = 8.8, 1.2 Hz, 2 H, ArH), 7.41 (dd, J = 8.7, 7.4 Hz, 2 H, ArH), 7.36–7.34 (m, 3 H, ArH), 7.28–7.26 (m, 2 H, ArH), 7.22–7.19 (m, 3 H, ArH), 7.19–7.16 (m, 2 H, ArH), 6.19–6.18 (m, 2 H, CH=CH), 4.34 (td, J = 11.7, 8.4 Hz, 1 H, CHCH=CH), 3.85–3.82 (m, 1 H, CHCH2), 3.18 (dd, J = 19.2, 8.4 Hz, 1 H, CHHCO), 2.81 (dd, J = 19.2, 12.1 Hz, 1 H, CHHCH), 1.39 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ (major) = 204.9, 168.4, 165.6, 138.4, 135.9, 135.3, 133.1, 130.2, 129.2, 129.1 (2 C), 128.9, 128.8, 128.7, 128.5, 128.0, 126.5, 126.4, 125.5, 123.4, 120.8, 119.3 (2 C), 75.6, 55.4, 45.6, 43.9, 36.3, 29.5 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C31H30ClN2O2: 497.1990; found: 497.1981.


#

(5S,8S,9R)-4-(tert-Butyl)-8-(furan-2-yl)-2-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3d)

Compound 3d was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 101 mg (56%); pale yellow oil; [α]D 27 +290.8 (c = 0.5, CHCl3).

HPLC: Chiralpak IB, n-heptane/EtOH (9:1), 1.0 mL/min, t R (minor) = 10.65 min, t R (major) = 8.73 min; T = 30 °C; 91% ee.

IR (ATR): 3458, 2970, 2328, 1739, 1366, 1216, 1095, 906, 752, 687 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.88–7.86 (m, 2 H, ArH), 7.42–7.38 (m, 3 H, ArH), 7.25–7.18 (m, 6 H, ArH), 6.31–6.28 (m, 2 H, ArH), 6.22–6.18 (m, 2 H, CH=CH), 4.39 (td, J = 11.4, 8.4 Hz, 1 H, CHCH=CH), 4.01 (dd, J = 11.2, 8.3 Hz, 1 H, CHCH2), 3.08 (dd, J = 19.2, 8.4 Hz, 1 H, CHHCO), 2.99 (dd, J = 19.2, 11.7 Hz, 1 H, CHHCH), 1.37 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ (major) = 204.7, 168.4, 165.8, 152.4, 142.0, 137.6, 136.2, 135.1, 128.8 (2 C), 128.5 (2 C), 127.9, 126.4 (2 C), 125.4, 123.7, 119.2 (2 C), 110.4, 107.8, 75.2, 52.4, 42.9, 38.4, 36.3, 29.4 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C29H29N2O3: 453.2172; found: 453.2161.


#

(5S,8R,9R)-4-(tert-Butyl)-2-phenyl-8-[(E)-prop-1-en-1-yl]-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3e)

Compound 3e was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 77 mg (45%); pale yellow oil; [α]D 27 +282.8 (c = 0.5, CHCl3).

HPLC: Chiralpak AD, n-heptane/i-PrOH (97:3), 1.0 mL/min, t R (minor) = 10.56 min, t R (major) = 9.29 min; T = 30 °C; 86% ee.

IR (ATR): 3370, 2967, 2318, 1696, 1598, 1491, 1369, 1296, 1201, 1088, 961, 825, 749, 686 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.87–7.85 (m, 2 H, ArH), 7.39–7.37 (m, 2 H, ArH), 7.30–7.17 (m, 6 H, ArH), 6.48 (d, J = 15.9 Hz, 1 H, ArH), 6.21 (dd, J = 15.9, 8.6 Hz, 1 H, ArH), 5.64–5.60 (m, 1 H, CH=CHPh), 5.44–5.40 (m, 1 H, CHCH=CH), 3.71 (td, J = 11.5, 5.8 Hz, 1 H, CHCH=CH), 3.48 (dd, J = 11.5, 8.6 Hz, 1 H, CHCH2), 2.92 (dd, J = 19.0, 8.6 Hz, 1 H, CHHCO), 2.48 (dd, J = 19.0, 11.5 Hz, 1 H, CHHCH), 1.72–1.70 (m, 3 H, CH3), 1.33 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ = 205.9, 168.5, 165.8, 134.9, 130.4, 128.7 (2 C), 128.5 (2 C), 128.4 (2 C), 127.8, 126.5 (2 C), 125.3, 124.4, 119.2 (2 C), 75.3, 53.9, 44.3, 41.7, 36.3, 29.4 (3 C), 18.0.

HRMS (ESI+): m/z [M + H]+ calcd for C28H31N2O2: 427.2380; found: 427.2378.


#

(5S,8S,9R)-4-(tert-Butyl)-9-[(E)-4-methoxystyryl]-2,8-diphenyl-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3f)

Compound 3f was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 108 mg (55%); yellow oil; [α]D 27 +260.4 (c = 0.5, CHCl3).

HPLC: Chiralpak AD, n-heptane/i-PrOH (97:3), 1.0 mL/min, t R (minor) = 24.64 min, t R (major) = 20.12 min; T = 30 °C; 95% ee.

IR (ATR): 3454, 2930, 2320, 1740, 1598, 1493, 1368, 1223, 1117, 958, 752, 688 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.87 (dd, J = 8.7, 1.2 Hz, 2 H, ArH), 7.40–7.31 (m, 6 H, ArH), 7.28–7.25 (m, 1 H, ArH), 7.21–7.18 (m, 1 H, ArH), 7.08 (d, J = 8.8 Hz, 2 H, ArH), 6.73 (d, J = 8.8 Hz, 2 H, ArH), 6.11 (d, J = 15.8 Hz, 1 H, CH=CHPh), 6.04 (dd, J =15.9 Hz, 8.2, 1 H, CHCH=CH), 4.31 (td, J = 11.7, 8.4 Hz, 1 H, CHCH=CH), 3.88 (d, J = 8.1 Hz, 1 H, CHCH2), 3.74 (s, 3 H, OCH3), 3.17 (dd, J = 19.3, 8.4 Hz, 1 H, CHHCHO), 2.84 (dd, J = 19.3, 12.1 Hz, 1 H, CHHCH), 1.38 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ = 205.7, 168.6, 165.8, 159.4, 140.0, 137.6, 134.4, 129.0 (2 C), 128.9, 128.8, 128.7, 127.6 (2 C), 127.5 (2 C), 127.3, 125.4, 121.4, 119.3 (2 C), 113.8 (2 C), 75.8, 55.4, 55.3, 45.9, 44.5, 36.3, 29.5 (3 C).

HRMS (ESI): m/z [M + H]+ calcd for C32H33N2O3: 493.2485; found: 493.2479.


#

(5S,8S,9R)-4-(tert-Butyl)-9-[(E)-2-methoxystyryl]-2,8-diphenyl-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3g)

Compound 3g was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 158 mg (80%); pale yellow oil; [α]D 27 +257.7 (c = 6.2, CHCl3).

HPLC: Chiralpak IA, n-heptane/i-PrOH (9:1), 0.7 mL/min, t R (minor) = 9.74 min, t R (major) = 11.34 min; T = 30 °C; 92% ee.

IR (ATR): 3483, 2964, 2304, 2079, 1969, 1879, 1748, 1689, 1594, 1468, 1367, 1296, 1244, 1191, 1122, 1031, 958, 841, 751, 686 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.92 (d, J = 8.6 Hz, 2 H, ArH), 7.44–7.35 (m, 6 H, ArH), 7.31–7.26 (m, 1 H, ArH), 7.22–7.18 (m, 2 H, ArH), 7.15 (t, J = 7.8 Hz, 1 H, ArH), 6.81 (t, J = 10.9 Hz, 1 H, ArH), 6.74 (d, J = 8.2 Hz, 1 H, ArH), 6.53 (d, J = 16.1 Hz, 1 H, CH=CHPh), 6.22–6.16 (m, 1 H, CHCH=CH), 4.41–4.33 (m, 1 H, CHCH=CH), 3.98–3.91 (m, 1 H, CHCH2), 3.59 (s, 3 H, OCH3), 3.20 (dd, J = 19.3, 8.4 Hz, 1 H, CHHCO), 2.87 (dd, J = 19.3, 12.1 Hz, 1 H, CHHCH), 1.42 [s, 9 H, C(CH3)3].

13C NMR (151 MHz, CDCl3): δ = 205.8, 168.6, 165.9, 156.6, 140.1, 137.7, 130.0, 128.9 (2 C), 128.8 (2 C), 127.6 (2 C), 127.3 (2 C), 126.9, 125.5, 125.3, 124.2, 120.5, 119.2 (2 C), 110.9, 75.8, 55.7, 55.3, 46.1, 44.4, 36.3, 29.6 (3 C).

HRMS (ESI+): m/z [M + Na]+ calcd for C32H32N2O3Na: 515.2305; found: 515.2296.


#

(5S,8S,9R)-9-[(E)-2-(1H-Indol-2-yl)vinyl]-4-(tert-butyl)-2,8-diphenyl-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3h)

Compound 3h was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 96 mg (48%); pale yellow oil; [α]D 27 +292.7 (c = 0.5, CHCl3).

HPLC: Chiralpak IC, n-heptane/EtOH (97:3), 1.0 mL/min, t R (minor) = 7.06 min, t R (major) = 5.07 min; T = 30 °C; 87% ee.

IR (ATR): 3352, 2323, 2096, 1727, 1644, 1370, 1279, 1218, 1116, 681 cm–1.

1H NMR (600 MHz, CDCl3): δ = 8.16 (br s, 1 H, NH), 7.93–7.90 (m, 2 H, ArH), 7.47–7.46 (m, 1 H, ArH), 7.41–7.36 (m, 4 H, ArH), 7.34–7.32 (m, 2 H, ArH), 7.30–7.27 (m, 1 H, ArH), 7.23–7.19 (m, 2 H, ArH), 7.13–7.11 (m, 1 H, ArH), 7.04–7.01 (m, 1 H, ArH), 6.28 (dd, J = 2.1, 1.0 Hz, 1 H, ArH), 6.21 (d, J = 16.1 Hz, 1 H, CH=CHPh), 6.06–6.02 (m, 1 H, CHCH=CH), 4.34 (td, J = 11.7, 8.5 Hz, 1 H, CHCH=CH), 3.93 (dd, J = 11.2, 8.7 Hz, 1 H, CHCH2), 3.20 (dd, J = 19.4, 8.5 Hz, 1 H, CHHCO), 2.89 (dd, J = 19.4, 12.1 Hz, 1 H, CHHCH), 1.41 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ = 205.1, 168.6, 165.9, 139.6, 137.5, 136.7, 134.5, 129.0 (2 C), 128.9 (2 C), 128.3 (2 C), 127.5 (2 C), 125.8, 125.6, 123.0, 121.7, 120.6, 120.1, 119.3 (2 C), 110.7, 103.9, 75.8, 55.4, 45.8, 44.8, 36.4, 29.5 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C33H32N3O2: 502.2489; found: 502.2482.


#

(5S,8S,9R)-4-(tert-Butyl)-9-[(E)-2-(furan-2-yl)vinyl]-2,8-diphenyl-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3i)

Compound 3i was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 92 mg (51%); yellow oil; [α]D 27 +356.5 (c = 0.5, CHCl3).

HPLC: Chiralpak IA, n-heptane/EtOH (97:3), 1.0 mL/min, t R (minor) = 15.28 min, t R (major) = 14.11 min; T = 30 °C; 94% ee.

IR (ATR): 3461, 2964, 2331, 1743, 1597, 1490, 1368, 1211, 1113, 952, 749, 689 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.90–7.88 (m, 2 H, ArH), 7.42–7.27 (m, 7 H, ArH), 7.23–7.19 (m, 2 H, ArH), 6.25 (dd, J = 3.3, 1.8 Hz, 1 H, ArH), 6.14 (dd, J = 15.9, 8.5 Hz, 1 H, CH=CHPh), 6.05 (d, J = 3.3 Hz, 1 H, ArH), 5.98 (d, J = 15.9 Hz, 1 H, CHCH=CH), 4.33 (td, J = 11.7, 8.5 Hz, 1 H, CHCH=CH), 3.86 (dd, J = 11.3, 8.5 Hz, 1 H, CHCH2), 3.18 (dd, J = 19.3, 8.4 Hz, 1 H, CHHCO), 2.83 (dd, J = 19.3, 12.1 Hz, 1 H, CHHCH), 1.38 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ = 205.4, 168.3, 165.6, 151.5, 142.1, 139.9, 137.6, 128.9 (2 C), 128.8, 127.5 (2 C), 127.4 (2 C), 125.4, 122.9, 122.1, 119.3 (2 C), 111.1, 108.3, 75.6, 55.0, 46.0, 44.4, 36.3, 29.5 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C29H29N2O3: 453.2172; found: 453.2171.


#

(5S,8S,9R)-4-(tert-Butyl)-9-[(1E,3E)-penta-1,3-dien-1-yl]-2,8-diphenyl-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3j)

Compound 3j was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 103 mg (60%); pale yellow oil; [α]D 27 +279.6 (c = 3.2, CHCl3).

HPLC: Chiralcel OJ, n-heptane/EtOH (97:3), 0.7 mL/min, t R (minor) = 7.54 min, t R (major) = 10.64 min; T = 30 °C; 90% ee.

IR (ATR): 3482, 2967, 2297, 2061, 1952, 1748, 1694, 1595, 1493, 1368, 1294, 1198, 1124, 1061, 986, 941, 849, 754, 687 cm–1.

1H NMR (600 MHz, CDCl3): δ (major) = 7.88 (d, J = 8.5 Hz, 2 H, ArH), 7.43–7.35 (m, 4 H, ArH), 7.33–7.26 (m, 3 H, ArH), 7.22–7.18 (m, 1 H, ArH), 5.87–5.74 (m, 2 H, CHCH=CH), 5.54–5.41 (m, 2 H, CH=CHCH3), 4.27–4.19 (m, 1 H, CHCH=CH), 3.74 (dd, J = 11.7, 8.5 Hz, 1 H, CHCH2), 3.13 (dd, J = 19.3, 8.5 Hz, 1 H, CHHCO), 2.78 (dd, J = 19.3, 11.7 Hz, 1 H, CHHCH), 1.62 (d, J = 7.3 Hz, 3 H, CH=CHCH 3), 1.35 [s, 9 H, C(CH3)3].

13C NMR (150 MHz, CDCl3): δ (major) = 205.7, 168.5, 165.8, 140.1, 137.7, 135.3, 130.6, 130.2, 128.8 (2 C), 128.5, 127.5 (2 C), 127.2 (2 C), 125.3, 124.0, 119.2 (2 C), 75.7, 54.9, 46.1, 44.4, 36.2, 29.5 (3 C), 17.9.

HRMS (ESI): m/z [M + H]+ calcd for C28H31N2O2: 427.2380; found: 427.2379.


#

(5S,8S,9R)-4-Methyl-2,8-diphenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3k)

Compound 3k was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 77 mg (71%); pale yellow oil; [α]D 20 +54.5 (c = 1.7, CHCl3).

HPLC: Chiralpak AS, n-heptane/i-PrOH (9:1), 1.0 mL/min, t R (minor) = 6.20 min, t R (major) = 8.29 min; T = 30 °C; 85% ee.

IR (ATR): 3437, 3030, 2927, 2847, 2635, 2324, 2101, 1894, 1712, 1594, 1495, 1450, 1368, 1304, 1222, 1076, 1020, 897, 838, 754, 694 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.82 (d, J = 8.7 Hz, 2 H, ArH), 7.40–7.36 (m, 2 H, ArH), 7.36–7.30 (m, 4 H, ArH), 7.28–7.26 (m, 1 H, ArH), 7.22–7.18 (m, 3 H, ArH), 7.18–7.14 (m, 3 H, ArH), 6.26–6.21 (m, 1 H, CH=CHPh), 6.17–6.13 (m, 1 H, CHCH=CH), 4.37 (td, J = 11.2, 9.0 Hz, 1 H, CHCH=CH), 3.46 (dd, J = 11.2, 8.5 Hz, 1 H, CHCH2), 3.27 (dd, J = 19.6, 9.0 Hz, 1 H, CHHCO), 2.72 (dd, J = 19.6, 11.2 Hz, 1 H, CHHCH), 2.19 (s, 3 H, CH3).

13C NMR (151 MHz, CDCl3): δ = 205.0, 167.9, 157.2, 139.8, 137.4, 135.9, 135.1, 128.9 (2 C), 128.8 (2 C), 128.5 (2 C), 128.0 (2 C), 127.4 (2 C), 126.5 (2 C), 125.5, 123.3, 119.3 (2 C), 75.7, 55.7, 46.0, 43.7, 14.4.

HRMS (ESI+): m/z [M + H]+ calcd for C28H25N2O2: 421.1911; found: 421.1914.


#

(5S,8S,9R)-4-Ethyl-2,8-diphenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3l)

Compound 3l was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 76 mg (44%); yellow oil; [α]D 20 +99.4 (c = 2.5, CHCl3).

HPLC: Chiralpak IB, n-heptane/i-PrOH (9:1), 0.7 mL/min, t R (minor) = 10.02 min, t R (major) = 9.31 min; T = 30 °C; 86% ee.

IR (ATR): 3440, 3031, 2925, 2647, 2321, 2098, 1992, 1887, 1694, 1595, 1494, 1455, 1350, 1227, 1137, 1061, 961, 901, 834, 751, 691 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.86 (d, J = 7.8 Hz, 2 H, ArH), 7.39 (t, J = 8.0 Hz, 2 H, ArH), 7.37–7.34 (m, 2 H, ArH), 7.33–7.30 (m, 2 H, ArH), 7.28–7.24 (m, 2 H, ArH), 7.22–7.19 (m, 2 H, ArH), 7.19–7.14 (m, 3 H, ArH), 6.24–6.14 (m, 2 H, CH=CH), 4.36 (td, J = 20.2, 11.3 Hz, 1 H, CHCH=CH), 3.49 (dd, J = 11.3, 8.1 Hz, 1 H, CHCH2), 3.25 (dd, J = 19.6, 8.8 Hz, 1 H, CHHCO), 2.73 (dd, J = 19.6, 11.3 Hz, 1 H, CHHCH), 2.59–2.44 (m, 2 H, CH 2CH3), 1.34 (t, J = 7.4 Hz, 3 H, CH2CH 3).

13C NMR (151 MHz, CDCl3): δ = 205.2, 168.1, 161.0, 139.8, 137.6, 135.9, 135.0, 128.9 (2 C), 128.8 (2 C), 128.5 (2 C), 127.9 (2 C), 127.4 (2 C), 126.5 (2 C), 125.5, 123.4, 119.3 (2 C), 75.6, 55.6, 46.1, 43.8, 22.2, 9.6.

HRMS (ESI+): m/z [M + H]+ calcd for C29H27N2O2: 435.2067; found: 435.2065.


#

(5S,8S,9R)-4-Isopropyl-2,8-diphenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3m)

Compound 3m was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 90 mg (50%); yellow oil; [α]D 20 +188.9 (c = 2.7, CHCl3).

HPLC: Chiralpak IB, n-heptane/i-PrOH (9:1), 0.7 mL/min, t R (minor) = 8.73 min, t R (major) = 7.92 min; T = 30 °C; 80% ee.

IR (ATR): 3031, 2971, 2324, 2098, 1953, 1880, 1748, 1691, 1596, 1494, 1455, 1345, 1240, 1130, 1065, 963, 905, 837, 749, 689 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.86 (d, J = 7.7 Hz, 2 H, ArH), 7.41–7.37 (m, 2 H, ArH), 7.37–7.34 (m, 2 H, ArH), 7.34–7.31 (m, 2 H, ArH), 7.28–7.26 (m, 1 H, ArH), 7.22–7.18 (m, 3 H, ArH), 7.18–7.14 (m, 3 H, ArH), 6.23–6.15 (m, 2 H, CH=CH), 4.33 (td, J = 11.6, 8.5 Hz, 1 H, CHCH=CH), 3.57 (dd, J = 11.4, 6.5, Hz, 1 H, CHCH2), 3.22 (dd, J = 19.4, 8.5 Hz, 1 H, CHHCO), 2.82–2.74 (m, 2 H, CHHCH), 1.36 (d, J = 6.9 Hz, 3 H, CCH3), 1.31 (d, J = 6.9 Hz, 3 H, CCH3).

13C NMR (151 MHz, CDCl3): δ = 205.1, 168.2, 164.1, 139.7, 137.6, 136.0, 135.0, 128.9 (2 C), 128.8 (2 C), 128.5 (2 C), 127.9 (2 C), 127.4 (2 C), 126.4 (2 C), 125.4, 123.7, 119.3 (2 C), 75.6, 55.3, 46.2, 44.2, 29.3, 21.3, 19.8.

HRMS (ESI+): m/z [M + H]+ calcd for C30H29N2O2: 449.2224; found: 449.2229.


#

(5S,8S,9R)-2-(4-Bromophenyl)-4-(tert-butyl)-8-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3n)

Compound 3n was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 138 mg (64%); pale yellow oil; [α]D 20 +270.5 (c = 1.3, CHCl3).

HPLC: Chiralpak IB, n-heptane/i-PrOH (9:1), 0.7 mL/min, t R (minor) = 7.84 min, t R (major) = 7.06 min; T = 30 °C; 88% ee.

IR (ATR): 3476, 2966, 2319, 2072, 1899, 1691, 1597, 1482, 1367, 1293, 1199, 1126, 1059, 963, 824, 731 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.80 (d, J = 8.9 Hz, 2 H, ArH), 7.52–7.48 (m, 2 H, ArH), 7.39–7.34 (m, 2H , ArH), 7.34–7.31 (m, 2 H, ArH), 7.29–7.26 (m, 1 H, ArH), 7.23–7.15 (m, 3 H, ArH), 7.15–7.12 (m, 2 H, ArH), 6.17–6.15 (m, 2 H, CH=CH), 4.30 (td, J = 11.7, 8.4 Hz, 1 H, CHCH=CH), 3.92–3.87 (m, 1 H, CHCH2), 3.18 (dd, J = 19.3, 8.4 Hz, 1 H, CHHCO), 2.86 (dd, J = 19.3, 12.1 Hz, 1 H, CHHCH), 1.38 [s, 9H, C(CH3)3].

13C NMR (151 MHz, CDCl3): δ = 205.3, 168.4, 166.2, 139.7, 136.6, 136.1, 135.1, 131.8 (2 C), 129.0 (2 C), 128.5 (2 C), 127.9 (2 C), 127.5 (2 C), 127.4 (2 C), 126.4 (2 C), 123.5, 120.6, 118.3, 75.7, 55.3, 45.9, 44.5, 36.4, 29.5.

HRMS (ESI+): m/z [M + Na]+ calcd for C31H29BrN2O2Na: 563.1305; found: 563.1305.


#

(5S,8S,9R)-4-(tert-Butyl)-2-(4-methoxyphenyl)-8-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3o)

Compound 3o was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 170 mg (86%); pale yellow oil; [α]D 20 +299.6 (c = 5.2, CHCl3).

HPLC: Chiralpak IC, n-heptane/i-PrOH (9:1), 1.0 mL/min, t R (minor) = 4.11 min, t R (major) = 5.17 min; T = 30 °C; 92% ee.

IR (ATR): 3489, 3027, 2966, 2305, 2059, 1957, 1880, 1749, 1688, 1596, 1508, 1455, 1371, 1296, 1246, 1182, 1131, 1062, 1030, 950, 831, 749, 695, 662 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.75 (d, J = 9.0 Hz, 2 H, ArH), 7.39–7.35 (m, 2 H, ArH), 7.35–7.32 (m, 2 H, ArH), 7.29–7.27 (m, 1 H, ArH), 7.23–7.19 (m, 2 H, ArH), 7.19–7.14 (m, 3 H, ArH), 6.94–6.91 (m, 2 H), 6.23–6.15 (m, 2 H, CH=CH), 4.34 (td, J = 11.7, 8.5 Hz, 1 H, CHCH=CH), 3.90 (dd, J = 11.3, 7.3 Hz, 1 H, CHCH2), 3.82 (s, 3 H, OCH3), 3.18 (dd, J = 19.3, 8.5 Hz, 1 H, CHHCO), 2.86 (dd, J = 19.3, 12.1 Hz, 1 H, CHHCH), 1.38 [s, 9 H, C(CH3)3].

13C NMR (151 MHz, CDCl3): δ = 205.7, 168.1, 165.7, 157.3, 139.9, 136.2, 134.9, 130.9, 128.9 (2 C), 128.5, 127.8 (2 C), 127.5, 127.4 (2 C), 126.4 (2 C), 123.9, 121.2 (2 C), 114.0 (2 C), 75.5, 55.5, 55.3, 45.9, 44.5, 36.3, 29.5 (3 C).

HRMS (ESI+): m/z [M + H]+ calcd for C32H33N2O3: 493.2486; found: 493.2476.


#

(5S,8S,9R)-2-Benzyl-4-(tert-butyl)-8-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3p)

Compound 3p was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 108 mg (57%); colorless solid; mp 122–124 °C; [α]D 20 +151.5 (c = 6.4, CHCl3).

HPLC: Chiralpak IC; n-heptane/i-PrOH 9:1, 0.5 mL/min, t R = 7.24 min (major), t R = 20.72 min (minor); T = 30 °C; 85% ee.

IR (ATR): 3368, 2967, 2322, 2079, 1963, 1888, 1744, 1690, 1592, 1492, 1455, 1367, 1271, 1186, 1140, 1113, 1067, 1029, 963, 904, 849, 747, 695 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.38–7.34 (m, 2 H, ArH), 7.34–7.31 (m, 2 H, ArH), 7.29–7.26 (m, 1 H, ArH), 7.25–7.22 (m, 2 H, ArH), 7.22–7.19 (m, 2 H, ArH), 7.19–7.16 (m, 1 H, ArH), 7.14–7.09 (m, 4 H, ArH), 6.18–6.10 (m, 2 H, CH=CH), 4.97 (d, J = 15.5 Hz, 1 H, CHHN), 4.76 (d, J = 15.5 Hz, 1 H, CHHPh), 4.31 (dd, J = 20.2, 11.4 Hz, 1 H, CHCH=CH), 3.86 (dd, J = 11.1, 7.0 Hz, 1 H, CHCH2), 3.15 (dd, J = 19.1, 8.3 Hz, 1 H, CHHCO), 2.83 (dd, J = 19.1, 12.2 Hz, 1 H, CHHCH), 1.31 [s, 9 H, C(CH3)3].

13C NMR (151 MHz, CDCl3): δ = 206.2, 170.1, 165.5, 140.0, 136.2, 136.2, 134.8 (2 C), 128.9 (2 C), 128.5 (2 C), 128.4 (2 C), 127.8 (2 C), 127.5 (2 C), 127.3 (2 C), 126.4 (2 C), 124.2, 74.3, 54.9, 47.9, 46.1, 44.3, 36.1, 29.6 (3 C).

HRMS (ESI+): m/z [M + Na]+ calcd for C32H32N2O2Na: 499.2356; found: 499.2346.


#

(5S,8S,9R)-4-(tert-Butyl)-2-(2,6-dimethylphenyl)-8-phenyl-9[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3q)

Compound 3q was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 116 mg (59%); yellow oil; [α]D 20 +148.7 (c = 4.4, CHCl3).

HPLC: Chiralpak IA, n-heptane/EtOH (7:3), 0.5 mL/min, t R (minor) = 10.74 min, t R (major) = 12.35 min; T = 30 °C; 85% ee.

IR (ATR): 3812, 3460, 3091, 2971, 2323, 2058, 1898, 1739, 1595, 1469, 1369, 1294, 1225, 1035, 961, 801, 729 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.38–7.31 (m, 4 H, ArH), 7.28–7.26 (m, 1 H, ArH), 7.26–7.23 (m, 2 H, ArH), 7.22–7.19 (m, 3 H, ArH), 7.18 (d, J = 7.5 Hz, 1 H, ArH), 7.12 (d, J = 7.5 Hz, 1 H, ArH), 7.04 (d, J = 7.5 Hz, 1 H, ArH), 6.36–6.25 (m, 2 H, CH=CH), 4.34 (td, J = 11.8, 8.3 Hz, 1 H, CHCH=CH), 3.94 (dd, J = 11.2, 8.3 Hz, 1 H, CHCH2), 3.18 (dd, J = 19.1, 8.3 Hz, 1 H, CHHCO), 2.87 (dd, J = 19.1, 12.3 Hz, 1 H, CHHCH), 2.24 (s, 3 H, ArCH 3), 2.02 (s, 3 H, ArCH 3), 1.38 [s, 9 H, C(CH3)3].

13C NMR (151 MHz, CDCl3): δ = 206.0, 169.0, 166.2, 139.9, 137.3, 135.0, 129.2, 129.0 (2 C), 128.5 (2 C), 128.4, 128.2 (2 C), 127.9 (2 C), 127.4 (2 C), 127.3 (2 C), 126.3 (2 C), 124.5, 74.4, 54.9, 46.1, 44.4, 36.3, 29.7 (3 C), 18.3, 18.1.

HRMS (ESI+): m/z [M + H]+ calcd for C33H35N2O2: 491.2693; found: 491.2693.


#

(5S,8S,9R)-2-(4-Chlorophenyl)-4-methyl-8-phenyl-9-[(E)-styryl]-2,3-diazaspiro[4.4]non-3-ene-1,6-dione (3r)

Compound 3r was isolated after flash chromatography (n-pentane/EtOAc, 20:1); yield: 93 mg (46%); yellow oil; [α]D 20 +57.0 (c = 2.2, CHCl3).

HPLC: Chiralpak IC, n-heptane/i-PrOH (9:1), 0.7 mL/min, t R (minor) = 4.98 min, t R (major) = 4.52 min; T = 30 °C; 70% ee.

IR (ATR): 3452, 3023, 2928, 2649, 2322, 2105, 1989, 1907, 1725, 1591, 1492, 1365, 1298, 1219, 1087, 1010, 896, 827, 754, 696 cm–1.

1H NMR (600 MHz, CDCl3): δ = 7.80 (d, J = 9.0 Hz, 2 H, ArH), 7.37–7.33 (m, 4 H, ArH), 7.33–7.30 (m, 2 H, ArH), 7.28–7.26 (m, 1 H, ArH), 7.23–7.19 (m, 2 H, ArH), 7.19–7.13 (m, 3 H, ArH), 6.23 (d, J = 15.8 Hz, 1 H, CH=CHPh), 6.13 (dd, J = 15.8, 8.6 Hz, 1 H, CHCH=CH), 4.35 (td, J = 11.3, 9.0 Hz, 1 H, CHCH=CH), 3.46 (dd, J = 11.4, 8.6 Hz, 1 H, CHCH2), 3.27 (dd, J = 19.7, 9.0 Hz, 1 H, CHHCO), 2.72 (dd, J = 19.7, 11.2 Hz, 1 H, CHHCH), 2.19 (s, 3 H, CH3).

13C NMR (151 MHz, CDCl3): δ = 204.8, 167.9, 157.5, 139.6, 136.0, 135.8, 135.2, 130.6, 128.9 (2 C), 128.8 (2 C), 128.5, 128.1, 127.5 (2 C), 127.4 (2 C), 126.5 (2 C), 123.1, 120.2 (2 C), 75.7, 55.7, 46.0, 43.7, 14.4.

HRMS (ESI+): m/z [M + H]+ calcd for C28H24ClN2O2: 455.1521; found: 455.1524.


#
#

Acknowledgment

L.W. thanks the Alexander von Humboldt Foundation for a fellowship.

Supporting Information

  • References

    • 1a Sheehan J, Hunnemann DH. J. Am. Chem. Soc. 1966; 88: 3666
    • 1b Tiebes J. Diploma Thesis . RWTH Aachen University; Germany: 1990
    • 1c Enders D In Stereoselective Synthesis . Ottow E, Schöllhopf K, Schulz B.-G. Springer Verlag; Berlin: 1993: 63-90

      For selected reviews, see:
    • 2a Nair V, Bindu S, Sreekumar V. Angew. Chem. Int. Ed. 2004; 43: 2
    • 2b Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 2c Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506
    • 2d Marion N, Diez-Gonzalez S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
    • 2e Enders D, Niemeier O, Henseler H. Chem. Rev. 2007; 107: 5605
    • 2f Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 2g Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 2h Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 2i Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 2j Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2205
    • 2k Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 2l Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
    • 2m Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 2n Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 2o Zhao DB, Candish L, Paul D, Glorius F. ACS Catal. 2016; 6: 5978
  • 3 For a review, see: Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 4a Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur. J. Org. Chem. 2015; 9: 2030
    • 4b Amata E, Bland ND, Campbell RK, Pollastrie MP. Tetrahedron Lett. 2015; 56: 2832
    • 4c Schmidt B, Scheufler C, Volz J, Feth MP, Hummel RP, Hatzelmann A, Zitt C, Wohlsen A, Marx D, Kley HP, Ockert D, Heuser A, Christiaans JA. M, Sterk GJ, Menge WM. P. B (Nycomed GmbH, Germany) Patent WO2008138939, 2008

      For a review, see:
    • 5a Chauhan P, Mahajan S, Enders D. Chem. Commun. 2015; 51: 12890

    • For selected examples, see:
    • 5b Gogoi S, Zhao CG, Ding D. Org. Lett. 2009; 11: 2249
    • 5c Wang Z, Yang Z, Chen D, Liu X, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4928
    • 5d Chen XY, Sun LH, Ye S. Chem. Eur. J. 2013; 19: 4441
    • 5e Liang J, Chen Q, Liu L, Jiang X, Wang R. Org. Biomol. Chem. 2013; 11: 1441
    • 5f Zhang HM, Lv H, Ye S. Org. Biomol. Chem. 2013; 11: 6255
    • 5g Chauhan P, Mahajan S, Loh CC, Raabe G, Enders D. Org. Lett. 2014; 16: 2954
    • 5h Hack D, Chauhan P, Deckers K, Mizutani Y, Raabe G, Enders D. Chem. Commun. 2015; 51: 2266
    • 5i Yetra SR, Modal S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
    • 5j Zhao T, Zhang HR, Cui LC, Qu JP, Wang BM. RSC Adv. 2015; 5: 86056
    • 5k Li JH, Du DM. Adv. Synth. Catal. 2015; 357: 3986
    • 5l Hack D, Dürr AB, Deckers K, Chauhan P, Seling N, Rübennach L, Mertens L, Raabe G, Schonenebeck F, Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
    • 5m Wu SC, Li Y, Xu GX, Chen SQ, Zhang YQ, Liu N, Dong GQ, Miao CY, Su H, Zhang WN, Sheng CQ. Eur. J. Med. Chem. 2016; 115: 141
    • 5n Li JH, Wen HL, Liu L, Du DM. Eur. J. Org. Chem. 2016; 14: 2492
    • 5o Kaya U, Mahajan S, Schöbel JH, Valkonen A, Rissanen K, Enders D. Synthesis 2016; 48: 4091
  • 6 Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
  • 7 Wang L, Li S, Chauhan P, Hack D, Philipps AR, Puttreddy R, Rissanen K, Raabe G, Enders D. Chem. Eur. J. 2016; 22: 5123
  • 8 CCDC 1516205 contains the supplementary crystallographic data of spiropyrozolone 3p. The data can be obtained free of charge at www.ccdc.cam.ac.uk/getstructures.
    • 9a Kerr MS, Read de Alaniz J, Rovis T. J. Org. Chem. 2005; 70: 5725
    • 9b Huang XL, He L, Shao PL, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
    • 9c Enders D, Grossmann A, Fronert J, Raabe G. Chem. Commun. 2010; 46: 6282
    • 9d Campbell CD, Concellón C, Smith AD. Tetrahedron: Asymmetry 2011; 22: 797
  • 10 Chen Q, Liang JY, Wang SL, Wang D, Wang R. Chem. Commun. 2013; 49: 1657
    • 11a Mutulis F, Kreicberga J, Yahorava S, Mutule I, Borisova-Jan L, Yahorau A, Muceniece R, Azena S, Veiksina S, Petrovska R, Wikberg JE. S. Bioorg. Med. Chem. 2007; 15: 5787
    • 11b Rodrigo E, Ruano JL. G, Cid MB. J. Org. Chem. 2013; 78: 10737

  • References

    • 1a Sheehan J, Hunnemann DH. J. Am. Chem. Soc. 1966; 88: 3666
    • 1b Tiebes J. Diploma Thesis . RWTH Aachen University; Germany: 1990
    • 1c Enders D In Stereoselective Synthesis . Ottow E, Schöllhopf K, Schulz B.-G. Springer Verlag; Berlin: 1993: 63-90

      For selected reviews, see:
    • 2a Nair V, Bindu S, Sreekumar V. Angew. Chem. Int. Ed. 2004; 43: 2
    • 2b Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 2c Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506
    • 2d Marion N, Diez-Gonzalez S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
    • 2e Enders D, Niemeier O, Henseler H. Chem. Rev. 2007; 107: 5605
    • 2f Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 2g Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 2h Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 2i Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 2j Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2205
    • 2k Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 2l Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
    • 2m Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 2n Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 2o Zhao DB, Candish L, Paul D, Glorius F. ACS Catal. 2016; 6: 5978
  • 3 For a review, see: Kumar V, Kaur K, Gupta GK, Sharma AK. Eur. J. Med. Chem. 2013; 69: 735
    • 4a Zhang Y, Wu S, Wang S, Fang K, Dong G, Liu N, Miao Z, Yao J, Li J, Zhang W, Sheng C, Wang W. Eur. J. Org. Chem. 2015; 9: 2030
    • 4b Amata E, Bland ND, Campbell RK, Pollastrie MP. Tetrahedron Lett. 2015; 56: 2832
    • 4c Schmidt B, Scheufler C, Volz J, Feth MP, Hummel RP, Hatzelmann A, Zitt C, Wohlsen A, Marx D, Kley HP, Ockert D, Heuser A, Christiaans JA. M, Sterk GJ, Menge WM. P. B (Nycomed GmbH, Germany) Patent WO2008138939, 2008

      For a review, see:
    • 5a Chauhan P, Mahajan S, Enders D. Chem. Commun. 2015; 51: 12890

    • For selected examples, see:
    • 5b Gogoi S, Zhao CG, Ding D. Org. Lett. 2009; 11: 2249
    • 5c Wang Z, Yang Z, Chen D, Liu X, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4928
    • 5d Chen XY, Sun LH, Ye S. Chem. Eur. J. 2013; 19: 4441
    • 5e Liang J, Chen Q, Liu L, Jiang X, Wang R. Org. Biomol. Chem. 2013; 11: 1441
    • 5f Zhang HM, Lv H, Ye S. Org. Biomol. Chem. 2013; 11: 6255
    • 5g Chauhan P, Mahajan S, Loh CC, Raabe G, Enders D. Org. Lett. 2014; 16: 2954
    • 5h Hack D, Chauhan P, Deckers K, Mizutani Y, Raabe G, Enders D. Chem. Commun. 2015; 51: 2266
    • 5i Yetra SR, Modal S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
    • 5j Zhao T, Zhang HR, Cui LC, Qu JP, Wang BM. RSC Adv. 2015; 5: 86056
    • 5k Li JH, Du DM. Adv. Synth. Catal. 2015; 357: 3986
    • 5l Hack D, Dürr AB, Deckers K, Chauhan P, Seling N, Rübennach L, Mertens L, Raabe G, Schonenebeck F, Enders D. Angew. Chem. Int. Ed. 2016; 55: 1797
    • 5m Wu SC, Li Y, Xu GX, Chen SQ, Zhang YQ, Liu N, Dong GQ, Miao CY, Su H, Zhang WN, Sheng CQ. Eur. J. Med. Chem. 2016; 115: 141
    • 5n Li JH, Wen HL, Liu L, Du DM. Eur. J. Org. Chem. 2016; 14: 2492
    • 5o Kaya U, Mahajan S, Schöbel JH, Valkonen A, Rissanen K, Enders D. Synthesis 2016; 48: 4091
  • 6 Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
  • 7 Wang L, Li S, Chauhan P, Hack D, Philipps AR, Puttreddy R, Rissanen K, Raabe G, Enders D. Chem. Eur. J. 2016; 22: 5123
  • 8 CCDC 1516205 contains the supplementary crystallographic data of spiropyrozolone 3p. The data can be obtained free of charge at www.ccdc.cam.ac.uk/getstructures.
    • 9a Kerr MS, Read de Alaniz J, Rovis T. J. Org. Chem. 2005; 70: 5725
    • 9b Huang XL, He L, Shao PL, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
    • 9c Enders D, Grossmann A, Fronert J, Raabe G. Chem. Commun. 2010; 46: 6282
    • 9d Campbell CD, Concellón C, Smith AD. Tetrahedron: Asymmetry 2011; 22: 797
  • 10 Chen Q, Liang JY, Wang SL, Wang D, Wang R. Chem. Commun. 2013; 49: 1657
    • 11a Mutulis F, Kreicberga J, Yahorava S, Mutule I, Borisova-Jan L, Yahorau A, Muceniece R, Azena S, Veiksina S, Petrovska R, Wikberg JE. S. Bioorg. Med. Chem. 2007; 15: 5787
    • 11b Rodrigo E, Ruano JL. G, Cid MB. J. Org. Chem. 2013; 78: 10737

Zoom Image
Figure 1 Selected pharmaceutically active spiropyrazolones
Zoom Image
Scheme 1 Selected strategies for the asymmetric synthesis of spiropyrazolones
Zoom Image
Scheme 2 Substrate scope of the spiropyrazolones (variation of the enals)
Zoom Image
Scheme 3 Extended substrate scope of the spiropyrazolones
Zoom Image
Figure 2 X-ray crystal structure of the spiropyrazolone 3p
Zoom Image
Scheme 4 Proposed catalytic cycle of the asymmetric spiropyrazolone synthesis