Synlett 2017; 28(16): 2147-2152
DOI: 10.1055/s-0036-1588182
letter
© Georg Thieme Verlag Stuttgart · New York

Rhodium(III)-Catalyzed Sequential Cleavage of Two C–H Bonds for the Synthesis of Polyarylated Naphthols

Ruokun Feng
b   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry, Shaoxing University, Shaoxing 312000, P. R. of China
,
Yuan Gao
b   Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Department of Chemistry, Shaoxing University, Shaoxing 312000, P. R. of China
,
Zhanxiang Liu*
a   Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, P. R. of China   Email: liuzhanx@zju.edu.cn   Email: yhzhang@zju.edu.cn
,
Yuhong Zhang*
a   Department of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, P. R. of China   Email: liuzhanx@zju.edu.cn   Email: yhzhang@zju.edu.cn
c   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
› Author Affiliations
Funding from the Science Technology Department of Zhejiang Province (No. LQ15B020002) and NSFC (Nos. 21472165 and 21672186) is gratefully acknowledged.
Further Information

Publication History

Received: 14 May 2017

Accepted after revision: 16 May 2017

Publication Date:
04 July 2017 (online)


Abstract

A Rh(III)-catalyzed multiple C–H bond activation/cyclization of phenol derivatives with alkynes was developed. Polyaryl-substituted naphthol derivatives, potentially useful as organic optoelectronic materials, were obtained in moderate to good yields.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Watson MD. Fethtenkötter A. Müllen K. Chem. Rev. 2001; 101: 1267
    • 1b Mitschke U. Bäuerle P. J. Mater. Chem. 2000; 10: 1471
    • 1c Harvey RG. Polycyclic Aromatic Hydrocarbons . Wiley-VCH; Weinheim: 1997
  • 2 Anthony JE. Angew. Chem. Int. Ed. 2008; 47 (03) 452

    • For selected reviews, see:
    • 3a Metal-Catalyzed Cross-Coupling Reactions . Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998
    • 3b Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 3c Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174

      For selected general reviews on transition-metal-catalyzed C–H activation and its synthetic applications, see:
    • 4a Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 4b Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 4c Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 4d Jazzar R. Hitce J. Renaudat A. Sofack-Kreutzer J. Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 4e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 4f Magano J. Dunetz JR. Chem. Rev. 2011; 111: 2177 ; see also Ref. 3 (c)
    • 5a Flynn AB. Ogilvie WW. Chem. Rev. 2007; 107: 4698
    • 5b Yasukawa T. Satoh T. Miura M. Nomura M. J. Am. Chem. Soc. 2002; 124: 12680
    • 5c Ueura K. Satoh T. Miura M. J. Org. Chem. 2007; 72: 5362
    • 5d Yamashita M. Hirano K. Satoh T. Miura M. Org. Lett. 2009; 11: 2337
    • 5e Uto T. Shimizu M. Ueura K. Tsurugi H. Satoh T. Miura M. J. Org. Chem. 2008; 73: 298
    • 5f Yamashita M. Horiguchi H. Hirano K. Satoh T. Miura M. J. Org. Chem. 2009; 74: 7481
    • 5g Wu Y.-T. Huang K.-H. Shin T.-C. Wu T.-C. Chem. Eur. J. 2008; 14: 6697
    • 5h Ilies L. Matsumoto A. Kobayashi M. Yoshikai N. Nakamura E. Synlett 2012; 23: 2381
    • 5i Le Bras J. Muzart J. Synthesis 2014; 46: 1555
    • 5j Pham MV. Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
    • 6a Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 6b Guimond N. Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
    • 7a Ueura K. Satoh T. Miura M. Org. Lett. 2007; 9: 1407
    • 7b Umeda N. Tsurugi H. Satoh T. Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
    • 7c Morimoto K. Hirano K. Satoh T. Miura M. Org. Lett. 2010; 12: 2068
    • 7d Hashimoto Y. Hirano K. Satoh T. Kakiuchi F. Miura M. Org. Lett. 2012; 14: 2058
    • 7e Umeda N. Hirano K. Satoh T. Shibata N. Sato H. Miura M. J. Org. Chem. 2011; 76: 13
    • 8a Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9982
    • 8b Rakshit S. Patureau FW. Glorius F. J. Am. Chem. Soc. 2010; 132: 9585
    • 8c Patureau FW. Besset T. Kuhl N. Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 9a Li Y. Li B.-J. Wang W.-H. Huang W.-P. Zhang X.-S. Chen K. Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 2115
    • 9b Li B.-J. Wang H.-Y. Zhu Q.-L. Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 3948
    • 9c Liu B. Hu F. Shi B.-F. Adv. Synth. Catal. 2014; 356: 2688
    • 9d Qian Z.-C. Zhou J. Li B. Hu F. Shi B.-F. Org. Biomol. Chem. 2014; 12: 3594
    • 9e Qian Z.-C. Zhou J. Li B. Shi B.-F. Synlett 2014; 25: 1036
    • 10a Wang F. Song G. Li X. Org. Lett. 2010; 12: 5430
    • 10b Wei X. Zhao M. Du Z. Li X. Org. Lett. 2011; 13: 4636
    • 10c Chen J. Song G. Pan C.-L. Li X. Org. Lett. 2010; 12: 5426
    • 10d Shi Z. Tang C. Jiao N. Adv. Synth. Catal. 2012; 354: 2695
    • 10e Ackermann L. Lygin AV. Hofmann N. Angew. Chem. Int. Ed. 2011; 50: 6379
    • 10f Wu J. Cui X. Mi X. Li Y. Wu Y. Chem. Commun. (Cambridge) 2010; 46: 6771
    • 10g Song G. Gong X. Li X. J. Org. Chem. 2011; 76: 7583
    • 10h Zheng J. You S.-L. Chem. Commun. (Cambridge) 2014; 50: 8204
    • 10i Martínez ÁM. Echavarren J. Alonso I. Rodríguez N. Gómez Arrayás R. Carretero JC. Chem. Sci. 2015; 6: 5802
  • 11 Gong T.-J. Xiao B. Liu Z.-J. Wan J. Xu J. Luo D.-F. Fu Y. Liu L. Org. Lett. 2011; 13: 3235
  • 12 Feng C. Loh T.-P. Chem. Commun. 2011; 47: 10458
    • 13a Reddy MC. Jeganmohan M. Chem. Commun. 2013; 49: 481
    • 13b Li B. Ma J. Liang Y. Wang N. Xu S. Song H. Wang B. Eur. J. Org. Chem. 2013; 1950
  • 14 Polyarylaryl Dimethylcarbamates 4; General Procedure A 25 mL sealed tube equipped with a magnetic stirrer bar was charged with [Cp*RhCl2]2 (3 mg, 0.005 mmol), AgSbF6 (7 mg, 0.02 mmol), Cu(OAc)2 (80 mg, 0.4 mol), carbamate 1 (0.2 mmol), alkyne 2 (0.5 mmol), and PhF (2.0 mL). The tube was then sealed and heated at 110 °C with stirring for 12 h. After cooling, the mixture was filtered through a plug of Celite, which was then washed with EtOAc (3 × 20 mL). The combined organic phases were washed with brine (2 × 20 mL), dried (Na2SO4), filtered, and concentrated. The residue was purified by flash column chromatography (silica gel, EtOAc–PE). 1,2,3,4-Tetraphenyl-9-anthryl Dimethylcarbamate (4aa) Yellow solid; yield: 86 mg (76%); mp 227–229 °C. IR (KBr): 1727, 1160 cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 2.47 (s, 3 H), 2.71 (s, 3 H), 6.67–6.69 (m, 1 H), 6.77–6.84 (m, 9 H), 7.00–7.03 (m, 1 H), 7.07–7.11 (m, 1 H), 7.15–7.17 (m, 2 H), 7.23 (m, 2 H), 7.27–7.43 (m, 6 H), 7.77–7.80 (m, 2 H), 8.12 (s, 1 H). 13C NMR (100 MHz, CDCl3, TMS): δ = 36.1, 36.4, 121.4, 123.7, 124.7, 125.0, 125.3, 125.5 (2C), 125.8, 126.2, 126.4, 126.6, 127.6, 127.7, 128.6, 129.8, 131.1, 131.2, 131.4, 131.7, 132.1, 134.8, 138.4, 138.6, 139.9, 140.4, 140.6, 141.1, 142.5, 143.5, 154.2. HRMS (EI): m/z [M+] calcd for C41H31NO2: 569.2355; found: 569.2358.