Synthesis 2017; 49(08): 1874-1878
DOI: 10.1055/s-0036-1588131
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Method for Catalytic Aromatic Pentafluoroethylation Using Potassium (Pentafluoroethyl)trimethoxyborate

Tsuyuka Sugiishi
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan   Email: amii@gunma-u.ac.jp
,
Daisuke Kawauchi
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan   Email: amii@gunma-u.ac.jp
,
Mizuki Sato
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan   Email: amii@gunma-u.ac.jp
,
Tatsuya Sakai
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan   Email: amii@gunma-u.ac.jp
,
Hideki Amii*
Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan   Email: amii@gunma-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 02 November 2016

Accepted after revision: 06 December 2016

Publication Date:
22 December 2016 (online)


Abstract

A method for the copper-catalyzed pentafluoroethylation of aryl iodides using potassium (pentafluoroethyl)trimethoxyborate has been developed. The borate was found to be a convenient pentafluoroethyl source. In parallel, it was found that the solvent, as well as ligand, makes significant impact on the catalytic perfluoroalkylations.

Supporting Information

 
  • References

    • 1a Metal-Catalyzed Cross-Coupling Reactions. Diederich F, Stang PJ. Wiley-VCH; Weinhein: 1998
    • 1b Metal-Catalyzed Cross-Coupling Reactions. 2nd ed., Vol. 2; de Meijere A, Diederich F. Wiley-VCH; Weinhein: 2004
    • 1c Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 2b Miyaura N. J. Organomet. Chem. 2002; 54: 653
    • 2c Saito S, Oh-tani S, Miyaura N. J. Org. Chem. 1997; 62: 8024

      For examples of copper-catalyzed Suzuki–Miyaura couplings, see:
    • 3a Li J.-H, Li J.-L, Wang D.-P, Pi S.-F, Xie Y.-X, Zhang M.-B, Hu X.-C. J. Org. Chem. 2007; 72: 2053
    • 3b Li J.-H, Li J.-L, Xie Y.-X. Synthesis 2007; 984
    • 3c Mao J, Guo J, Fang S.-JJ. Tetrahedron 2008; 64: 3905
    • 3d Yang C.-T, Zhang Z.-Q, Liu Y.-C, Liu L. Angew. Chem. Int. Ed. 2011; 50: 3904
    • 3e Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264
    • 3f Zhou Y, You W, Smith KB, Brown MK. Angew. Chem. Int. Ed. 2014; 53: 3475
    • 3g Zhang Z.-Q, Yang C.-T, Liang L.-J, Xiao B, Lu X, Liu J.-H, Sun Y.-Y, Marder TB, Fu Y. Org. Lett. 2014; 16: 6342
    • 3h Sun Y.-Y, Yi J, Lu X, Zhang Z.-Q, Xiao B, Fu Y. Chem. Commun. 2014; 50: 11060
  • 4 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
  • 5 Kolomeitsev AA, Kadyrov AA, Szczepkowska-Sztolcman J, Milewska M, Koroniak H, Bissky G, Barten JA, Röschenthaler G.-V. Tetrahedron Lett. 2003; 44: 8273
  • 6 Knauber T, Arikan F, Röschenthaler G.-V, Gooßen LJ. Chem. Eur. J. 2011; 17: 2689
    • 7a Saijo H, Ohashi M, Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15158
    • 7b Matoušek V, Václavík J, Hájek P, Charpentier J, Blastik ZE, Pietrasiak E, Budinská A, Togni A, Beier P. Chem. Eur. J. 2016; 22: 417
    • 8a Lundgren RJ, Stradiotto M. Angew. Chem. Int. Ed. 2010; 49: 9322
    • 8b Furuya T, Kamlet AS, Ritter T. Nature (London) 2011; 473: 470
    • 8c Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 8d Roy S, Gregg BT, Gribble GW, Le V.-D, Roy S. Tetrahedron 2011; 67: 2161
    • 8e Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048
    • 8f Ye Y, Sanford M. Synlett 2012; 23: 2005
    • 8g Wu XF, Neumann H, Beller M. Chem. Asian J. 2012; 7: 1744
    • 8h Jin Z, Hammond GB, Xu B. Aldrichimica Acta 2012; 45: 67
    • 8i Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 8j Qing F.-L. Chin. J. Org. Chem. 2012; 32: 815
    • 8k Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 8l García-Monforte MA, Martínez-Salvador S, Menjón B. Eur. J. Inorg. Chem. 2012; 4945
    • 8m Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 8n Landelle G, Panossian A, Pazenok S, Vors J.-P, Leroux FR. Beilstein J. Org. Chem. 2013; 9: 2476
    • 8o Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 8p Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 8q Wang H, Vicic DA. Synlett 2013; 24: 1887
    • 8r Browne DL. Angew. Chem. Int. Ed. 2014; 53: 1482
    • 8s Zhang C. Org. Biomol. Chem. 2014; 12: 6580
    • 8t Xu J, Liu X, Fu Y. Tetrahedron Lett. 2014; 55: 585
    • 8u Charpentier J, Fruh N, Togni A. Chem. Rev. 2015; 115: 650
    • 8v Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 8w Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
    • 8x Nenajdenko VG, Muzalevskiy VM, Shastin AV. Chem. Rev. 2015; 115: 973
    • 8y Alonso C, Martinez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 8z Sugiishi T, Amii H, Aikawa K, Mikami K. Beilstein J. Org. Chem. 2015; 11: 2661
  • 9 Urata H, Fuchikami T. Tetrahedron Lett. 1991; 32: 91
    • 10a Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 10b Litivinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
    • 10c Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
  • 11 Using (pentafluoroethyl)trimethylsilane, the pentafluoroethylation of aryl iodides 1 needs additional base such as KF. Our previous method[4] for the synthesis of (pentafluoroethyl)arenes 2 was carried out (Scheme 3). The addition of Me3Si-CF2CF3 (2.0 equiv) to 1-iodo-3-nitrobenzene (1a, 1.0 equiv) in the presence of CuI (10 mol%) and phen (10 mol%) at 60 °C formed 1-nitro-3-(pentafluoroethyl)benzene (2a) in only 56% yield (determined by 19F NMR analysis using CF3CF2OH as an internal standard).
    • 12a Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
    • 12b Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2013; 135: 12584
    • 13a Serizawa H, Aikawa K, Mikami K. Chem. Eur. J. 2013; 19: 17692
    • 13b Serizawa H, Aikawa K, Mikami K. Org. Lett. 2014; 16: 3456
  • 14 Propov I, Lindeman S, Daugulis O. J. Am. Chem. Soc. 2011; 133: 9286
  • 15 Schareina T, Wu X.-F, Zapf A, Cotte A, Gotta M, Bellar M. Top. Catal. 2012; 55: 426
  • 16 Aikawa K, Nakamura Y, Yokota Y, Toya W, Mikami K. Chem. Eur. J. 2015; 21: 96
  • 17 Gonda Z, Kovács S, Wéber C, Gáti T, Mészáros A, Kotschy A, Novák Z. Org. Lett. 2014; 16: 4268
  • 18 Doszczak L, Kraft P, Weber H.-P, Bertermann R, Triller A, Hatt H, Tacke R. Angew. Chem. Int. Ed. 2007; 46: 3367
  • 19 Sheppard WA. J. Am. Chem. Soc. 1965; 87: 2410
  • 20 Utsumi S, Katagiri T, Uneyama K. Tetrahedron 2012; 68: 1085