Synthesis 2017; 49(11): 2488-2494
DOI: 10.1055/s-0036-1558963
paper
© Georg Thieme Verlag Stuttgart · New York

Three-Component One-Pot Reactions of 2-Trifluoromethyl-N-nosylaziridine, Primary Amines, and Vinylsulfonium Salts for Convenient Access to CF3-Containing Piperazines

Kensuke Hirotaki
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Akiko Irie
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Yuki Nakamura
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Takeshi Hanamoto*
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 06 February 2017

Accepted after revision: 13 February 2017

Publication Date:
02 March 2017 (online)


Abstract

Trifluoromethylated piperazines were readily synthesized with excellent regioselectivity in high yields by the sequential reaction of 2-trifluoromethylated N-nosylaziridine (2-CF3-N-Ns-aziridine) with various primary amines, followed by treatment with vinylsulfonium salts, in one pot.

Supporting Information

 
  • References

    • 1a Name Reactions in Heterocyclic Chemistry. Li J.-J. Wiley; New Jersey: 2005
    • 1b van Delft FL, Blaauw RH, Rutjes FP. J. T. Synthesis 2004; 641-641
    • 1c Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893-893
    • 1d Joule JA, Mills K. Heterocyclic Chemistry . 4th ed. Blackwell Science; Oxford: 2000
  • 2 Cabrele C, Reiser O. J. Org. Chem. 2016; 81: 10109-10109
  • 3 Luescher MU, Vo C.-VT, Bode JF. Org. Lett. 2014; 16: 1236-1236
    • 4a Ojima I. J. Org. Chem. 2013; 78: 6358-6358
    • 4b Kirk KL. Org. Process Res. Dev. 2008; 12: 305-305
    • 4c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320-320
    • 4d Bégué J-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; New York: 2008
    • 4e Müller K, Faeh C, Diederich F. Science 2007; 317: 1881-1881
    • 4f Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303-303
    • 4g Uneyama K. Organofluorine Chemistry . Blackwell; Oxford: 2006
    • 4h Chambers RD. Fluorine in Organic Chemistry 2004-2004
    • 4i Hiyama T. Organofluorine Compounds . Springer Verlag; Berlin: 2000

      For recent reports, see:
    • 5a Hirotaki K, Kawazoe G, Hanamoto T. J. Fluorine Chem. 2015; 171: 169-169
    • 5b Yoshiki M, Ishibashi R, Yamada Y, Hanamoto T. Org. Lett. 2014; 16: 5509-5509
    • 5c Hirotaki K, Yamada Y, Hanamoto T. Asian J. Org. Chem. 2014; 3: 285-285
    • 5d Takehiro Y, Hirotaki K, Takeshita C, Furuno H, Hanamoto T. Tetrahedron 2013; 69: 7448-7448
    • 5e Kasai N, Maeda R, Furuno H, Hanamoto T. Synthesis 2012; 44: 3489-3489
  • 6 Hirotaki K, Yamaguchi K, Hanamoto T. Synlett 2016; 27: 2846-2846
    • 7a Waki M, Katagiri T, Matsuno K, Miyachi H. Tetrahedron Lett. 2014; 55: 6915-6915
    • 7b Dolfen J, Kenis S, Van Heck K, De Kimpe N, D’hooghe M. Chem. Eur. J. 2014; 20: 10650-10650
    • 7c Moens M, De Kimpe N, D’hooghe M. J. Org. Chem. 2014; 79: 5558-5558
    • 7d Kuzmich D, Bentzien J, Betageri R, DiSalvo D, Fadra-Khan T, Harcken C, Kukulka A, Nabozny G, Nelson R, Pack E, Souza D, Thomson D. Bioorg. Med. Chem. Lett. 2013; 23: 6640-6640
    • 7e Kenis S, D’hooghe M, Verniest G, Reybroeck M, Dang Thi TA, Pham The C, Thi Pham T, Törnroos KW, Van Tuyen N, De Kimpe N. Chem. Eur. J. 2013; 19: 5966-5966
    • 7f Katagiri T, Katayama Y, Taeda M, Ohshima T, Iguchi N, Uneyama K. J. Org. Chem. 2011; 76: 9305-9305
    • 7g Grellepois F, Nonnenmacher J, Lachaud F, Portella C. Org. Biomol. Chem. 2011; 9: 1160-1160
    • 7h Rinaudo G, Narizuka S, Askari N, Crousse B, Bonnet-Delpon D. Tetrahedron Lett. 2006; 47: 2065-2065
    • 7i Yamauchi Y, Kawate T, Katagiri T, Uneyama K. Tetrahedron 2003; 59: 9839-9839
    • 7j Katagiri T, Takahashi M, Fujiwara Y, Ihara H, Uneyama K. J. Org. Chem. 1999; 64: 7323-7323
    • 8a Ellis JM, Altman MD, Bass A, Butcher JW, Byford AJ, Donofrio A, Galloway S, Haidle AM, Jewell J, Kelly N, Leccese EK, Lee S, Maddess M, Miller JR, Moy LY, Osimboni E, Otte RD, Reddy MV, Spencer K, Sun B, Vincent SH, Ward GJ, Woo GH. C, Yang C, Houshyar H, Northrup AB. J. Med. Chem. 2015; 58: 1929-1929
    • 8b Fioravanti S, Pelagalli A, Pellacani L, Sciubba F, Vergari MC. Amino Acids 2014; 46: 1961-1961
    • 8c Piras M, Fleming IN, Harrison WT. A, Zanda M. Synlett 2012; 23: 2899-2899
    • 8d Korotaev VY, Barkov AY, Kodess MI, Kutyashev IB, Slepukhin PA, Zapevalov AY. Russ. Chem. Bull. 2009; 58: 1886-1886
    • 8e Molteni M, Bellucci MC, Bigotti S, Mazzini S, Volonterio A, Zanda M.  Org. Biomol. Chem. 2009; 7: 2286-2286
    • 8f Sinisi R, Ghilardi A, Ruiu S, Lazzari P, Malpezzi L, Sani M, Pani L, Zanda M. ChemMedChem 2009; 4: 1416-1416
    • 8g Korotaev VY, Skorik YA, Barkov AY, Kodess MI, Zapevalov AY. Russ Chem Bull. 2005; 54: 2545-2545
    • 9a Yar M, McGarrigle EM. M, Aggarwal VK. Org. Lett. 2009; 11: 257-257
    • 9b Yar M, McGarrigle EM. M, Aggarwal VK. Angew. Chem. Int. Ed. 2008; 47: 3784-3784
    • 10a Kan T, Fukuyama T. Chem. Commun. 2004; 353-353
    • 10b Miller SC, Scanlan TS. J. Am. Chem. Soc. 1998; 120: 2690-2690
    • 10c Miller SC.. Scanlan T. S. J. Am. Chem. Soc. 1997; 119: 2301-2301
    • 10d Fukuyama T, Jow C.-K. Tetrahedron Lett. 1995; 36: 6373-6373