Synlett 2016; 27(16): 2378-2383
DOI: 10.1055/s-0035-1562779
letter
© Georg Thieme Verlag Stuttgart · New York

A Combination System of p-Toluenesulfonic Acid and Acetic Acid for the Hydration of Alkynes

Haixuan Liu
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. of China   Email: c.cai@njust.edu.cn
,
Yunyang Wei
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. of China   Email: c.cai@njust.edu.cn
,
Chun Cai*
School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. of China   Email: c.cai@njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 April 2016

Accepted after revision: 15 June 2016

Publication Date:
15 July 2016 (online)


Abstract

A simple combination system of p-toluenesulfonic acid/acetic acid has been developed for efficient hydration of alkynes. The corresponding ketones can be obtained in good to excellent yields under mild conditions. The mechanism of the reaction was disclosed unambiguously which was a stepwise process (addition and then hydrolysis). Furthermore, this system was proved to be powerful that has the potential to be used to synthesize vinyl 4-methylbenzenesulfonates.

Supporting Information

 
  • References and Notes

  • 1 Hintermann L, Labonne A. Synthesis 2007; 1121
  • 2 Berthelot M. C. R. Hebd. Seances Acad. Sci. 1862; 50: 805
    • 3a Fukuda Y, Utimoto K. J. Org. Chem. 1991; 56: 3729
    • 3b Teles JH, Brode S, Chabanas M. Angew. Chem. Int. Ed. 1998; 37: 1415
    • 3c Mizushima E, Sato K, Hayashi T, Tanaka M. Angew. Chem. Int. Ed. 2002; 41: 4563
    • 3d Casado R, Contel M, Laguna M, Romero P, Sanz S. J. Am. Chem. Soc. 2003; 125: 11925
    • 3e Roembke P, Schmidbaur H, Cronje S, Raubenheimer H. J. Mol. Catal. A: Chem. 2004; 212: 35
    • 3f Vasudevan A, Verzal MK. Synlett 2004; 631
    • 3g Marion N, Ramón RS, Nolan SP. J. Am. Chem. Soc. 2009; 131: 448
    • 3h Almássy A, Nagy CE, Bényei AC, Joó F. Organometallics 2010; 29: 2484
    • 3i Nun P, Ramón RS, Gaillard S, Nolan SP. J. Organomet. Chem. 2011; 696: 7
    • 3j Zhu FX, Wang W, Li HX. J. Am. Chem. Soc. 2011; 133: 11632
    • 3k Tachinami T, Nishimura T, Ushimaru R, Noyori R, Naka H. J. Am. Chem. Soc. 2013; 135: 50
    • 3l Li F, Wang NN, Lu L, Zhu GJ. J. Org. Chem. 2015; 80: 3538
    • 3m Liang SZ, Jasinski J, Hammond GB, Xu B. Org. Lett. 2015; 17: 162
    • 4a Thuong MB. T, Mann A, Wagner A. Chem. Commun. 2012; 48: 434
    • 4b Das R, Chakraborty D. Appl. Organomet. Chem. 2012; 26: 722
    • 4c Venkateswara Rao KT, Sai Prasad PS, Lingaiah N. Green Chem. 2012; 14: 1507
    • 4d Chen ZW, Ye DN, Qian YP, Ye M, Liu LX. Tetrahedron 2013; 69: 6116
    • 4e Saha S, Sarbajna A, Bera JK. Tetrahedron Lett. 2014; 55: 1444
    • 5a Jha M, Shelke GM, Pericherla K, Kumar A. Tetrahedron Lett. 2014; 55: 4814
    • 5b Hassam M, Li WS. Tetrahedron 2015; 71: 2719
    • 6a Damiano JP, Postel M. J. Organomet. Chem. 1996; 522: 303
    • 6b Wu XF, Bezier D, Darcel C. Adv. Synth. Catal. 2009; 351: 367
    • 6c Park J, Yeon J, Lee PH, Lee K. Tetrahedron Lett. 2013; 54: 4414
    • 6d Bassetti M, Ciceri S, Lancia F, Pasquini C. Tetrahedron Lett. 2014; 55: 1608
    • 7a Hiscox W, Jennings PW. Organometallics 1990; 9: 1997
    • 7b Hartman JW, Hiscox WC, Jennings PW. J. Org. Chem. 1993; 58: 7613
    • 7c Baidossi W, Lahav M, Blum J. J. Org. Chem. 1997; 62: 669
    • 7d Lucey DW, Atwood JD. Organometallics 2002; 21: 2481
    • 8a Halpern J, James BR, Kemp AL. W. J. Am. Chem. Soc. 1961; 83: 4097
    • 8b Tokunaga M, Wakatsuki Y. Angew. Chem. Int. Ed. 1998; 37: 2867
    • 8c Grotjahn DB, Lev DA. J. Am. Chem. Soc. 2004; 126: 12232
    • 8d Ackermann L, Kaspar LT. J. Org. Chem. 2007; 72: 6149
    • 9a Blum J, Huminer H, Alper H. J. Mol. Catal. 1992; 75: 153
    • 9b Meier IK, Marsella JA. J. Mol. Catal. 1993; 78: 31
    • 9c Hu NX, Aso Y, Otsubo T, Ogura F. Tetrahedron Lett. 1986; 27: 6099
    • 9d Jin XJ, Oishi T, Yamaguchi K, Mizuno N. Chem. Eur. J. 2011; 17: 1261
    • 9e Hirabayashi T, Okimoto Y, Saito A, Morita M, Sakaguchi S, Ishii Y. Tetrahedron 2006; 62: 2231
    • 10a Allen AD, Chiang Y, Kresge AJ, Tidwell TT. J. Org. Chem. 1982; 47: 775
    • 10b Menashe N, Shvo Y. J. Org. Chem. 1993; 58: 7434
    • 10c Tsuchimoto T, Joya T, Shirakawa E, Kawakami Y. Synlett 2000; 1777
    • 10d Kamiguchi S, Takahashi I, Kondo K, Nagashima S, Kurokawa H, Miura H, Chihara T. J. Cluster Sci. 2007; 18: 845
  • 11 Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
  • 12 Liang SZ, Hammond GB, Xu B. Chem. Commun. 2015; 51: 903
    • 13a During our preparation of the manuscript, a similar work was published13b in which CF3SO3H/CF3CH2OH system was used for hydration of alkynes. The reaction occurs well under 25 °C or 70 °C and mostly 45 h was needed. The hydration reaction can also occur well at 25 °C using our system, we used higher temperature just in order to accelerate the reaction rate.
    • 13b Liu WB, Wang H, Li C.-J. Org. Lett. 2016; 18: 2184
    • 14a Cui DM, Meng Q, Zheng JZ, Zhang C. Chem. Commun. 2009; 12: 1577
    • 14b Klapars A, Campos KR, Chen CY, Volante RP. Org. Lett. 2005; 7: 1185
  • 15 General Procedures for Alkyne Hydration The corresponding alkyne (1 mmol) was added to a solution of PTSA·H2O (1 mmol, 0.190 g), AcOH (0.5 mL) in CH2Cl2 (1.0 mL). The reaction was then sealed and stirred at the indicated temperature (°C) and for the indicated amount of times (h) in Table 2. After completion, sat. aq NaHCO3 (10 mL) was added to quench the reaction and then extracted with CH2Cl2 (3 × 10 mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography to give the pure product. Acetophenone (2a) Colorless liquid; yield: 114 mg (95%). 1H NMR (500 MHz, CDCl3): δ = 7.95 (d, J = 7.5 Hz, 2 H), 7.56–7.54 (m, 1 H), 7.46–7.43 (m, 2 H), 2.59 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 198.18, 137.16, 133.12, 128.59, 128.33, 26.62.