Synlett 2016; 27(15): 2237-2240
DOI: 10.1055/s-0035-1562507
letter
© Georg Thieme Verlag Stuttgart · New York

An Aluminum(III)-Catalyzed Thioamide–Aldehyde–Styrene Condensation: Direct Synthesis of Allylic Thioamide Derivatives

Bin Xu
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
,
Xue Zhong
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
,
Xi-Cun Wang*
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
,
Zheng-Jun Quan*
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 05 May 2016

Accepted after revision: 31 May 2016

Publication Date:
27 June 2016 (online)


Abstract

An aluminum(III) triflate catalyzed three-component synthesis of allylic thioamide derivatives by condensation of a thioamide, paraformaldehyde and a styrene is reported.

Supporting Information

 
  • References and Notes

    • 1a Petranyi G, Ryder NS, Stütz A. Science 1984; 224: 1239
    • 1b Stütz A, Georgopoulos A, Granitzer W, Petranyi G, Berney D. J. Med. Chem. 1986; 29: 112
    • 1c Stütz A. Angew. Chem. Int. Ed. Engl. 1987; 26: 320 ; Angew. Chem. 1987, 99, 323
  • 2 Nanavati SM, Silverman RB. J. Am. Chem. Soc. 1991; 113: 9341
  • 3 Cheikh RB, Chaabouni R, Laurent A, Mison P, Nafti A. Synthesis 1983; 685
  • 4 Johannsen M, Jørgensen K. Chem. Rev. 1998; 98: 1689
  • 5 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 6 Burgess K, Liu LT, Pal B. J. Org. Chem. 1993; 58: 4758
  • 7 Paquette LA, Leit SM. J. Am. Chem. Soc. 1999; 121: 8126
  • 8 Nagashima H, Isono Y, Iwamatsu S. J. Org. Chem. 2001; 66: 315
  • 9 Ghorai MK, Kumar A, Das K. Org. Lett. 2007; 9: 5441
  • 10 Hayashi S, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2009; 48: 7224 ; Angew. Chem. 2009, 121, 7360
  • 11 Farwick A, Helmchen G. Org. Lett. 2010; 12: 1108
  • 12 Gärtner M, Weihofen R, Helmchen G. Chem. Eur. J. 2011; 17: 7605
  • 13 Tsuji J, Takahashi H, Morikawa A. Tetrahedron Lett. 1965; 6: 4387
    • 14a Trost BM, Fullerton TJ. J. Am. Chem. Soc. 1973; 95: 292
    • 14b Trillo P, Baeza A, Nájera C. Eur. J. Org. Chem. 2012; 2012: 2929
  • 15 Mayr H, Patz M. Angew. Chem. Int. Ed. 1994; 33: 938 ; Angew. Chem. 1994, 106, 990
  • 16 Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
  • 17 Li Y, Zhang X.-S, Zhu Q.-L, Shi Z.-J. Org. Lett. 2012; 14: 4498
  • 18 Xie Y, Hu J, Wang Y, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 20613
  • 19 Hu J, Xie Y, Huang H. Angew. Chem. Int. Ed. 2014; 53: 7272 ; Angew. Chem. 2014, 126, 7400
  • 20 Goldfogel MJ, Roberts CC, Meek SJ. J. Am. Chem. Soc. 2014; 136: 6227
  • 21 Banerjee D, Junge K, Beller M. Org. Chem. Front. 2014; 1: 368
    • 22a Bauer W, Kühlein K In Houben–Weyl: Methoden der Organischen Chemie . Vol. E5. Thieme; Stuttgart: 1985: 1218
    • 22b Jagodziński TS. Chem. Rev. 2003; 103: 197
    • 22c Sośnicki JG, Jagodziński TS, Hansen PE. Tetrahedron 2001; 57: 8705
    • 22d Matysiak J, Mącik-Niewiadomy G, Korniłłowicz T. Eur. J. Med. Chem. 2000; 35: 393
    • 22e Schwarzer K, Wojczewski C, Engels W. Nucleosides Nucleotides Nucleic Acids . 2001; 20: 879
  • 23 Tokuyama H, Yamashita T, Reding MT, Kaburagi Y, Fukuyama T. J. Am. Chem. Soc. 1999; 121: 3791
  • 24 Magedov IV, Kornienko AV, Zotova TO, Drozd VN. Tetrahedron Lett. 1995; 36: 4619
    • 25a Zhou W, Ni S, Mei H, Han J, Pan Y. Tetrahedron Lett. 2015; 56: 4128
    • 25b Morse PD, Nicewicz DA. Chem. Sci. 2015; 6: 270
    • 25c Minakata S, Morino Y, Oderaotoshi Y, Komatsu M. Org. Lett. 2006; 8: 3335
    • 25d Weolowska A, Jagodziński TS, Sośnicki JG, Hansen PE. Pol. J. Chem. 2001; 75: 387
    • 25e Jagodziński TS, Sośnicki JG, Krolikowska M. Heterocycl. Commun. 1995; 1: 353
  • 26 Jagodziński TS, Sośnicki JG, Nowak-Wydra B. Pol. J. Chem. 1993; 67: 1043
  • 27 Engman L. J. Org. Chem. 1991; 56: 3425
  • 28 Quan Z.-J, Wang X.-C. Chem. Rec. 2016; 16: 435
  • 29 Quan Z.-J, Hu W.-H, Zhang Z, Da Y.-X, Jia X.-D, Wang X.-C. Adv. Synth. Catal. 2013; 355: 891
  • 30 Zhang Z, Zhang Y.-S, Quan Z.-J, Da Y.-X, Wang X.-C. Tetrahedron 2014; 70: 9093
  • 31 Wang X.-X, Quan Z.-J, Wang X.-C. Asian J. Org. Chem. 2015; 4: 54
  • 32 1-[(2E)-3-Phenylprop-2-en-1-yl]azepane-2-thione (4a); Typical Procedure An oven-dried tube was charged with a mixture of cyclic thioamide 1a (1 mmol, 0.129 g), paraformaldehyde (2a; 4 mmol, 0.120 g), styrene (3a; 1.2 mmol, 0.125 g), and Al(OTf)3 (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH4Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO4). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:6)] to give a yellow oil; yield: 211 mg (0.86 mmol, 86%). 1H NMR (400 MHz, CDCl3): δ = 7.37–7.23 (m, 5 H), 6.49 (d, J = 15.6 Hz, 1 H), 6.18–6.11 (m, 1 H), 4.16 (d, J = 5.2 Hz, 2 H), 3.34 (s, 2 H), 2.57 (d, J = 5.2 Hz, 2 H), 1.66 (d, J = 38.4 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 175.6, 136.6, 132.5, 128.5, 127.5, 126.3, 125.1, 49.8, 48.6, 37.1, 29.9, 28.4, 23.4. HRMS (ESI+): m/z [M + H]+ calcd for C15H20NS: 246.1311; found: 246.1316.
  • 33 N-Benzyl-N-[(2E)-3-Phenylprop-2-en-1-yl]ethanethioamide (5a); Typical Procedure An oven-dried tube was charged with a mixture of acyclic thioamide 1b (1 mmol, 0.165 g), paraformaldehyde (2a; 4 mmol, 0.120 g), styrene (3a; 1.2 mmol, 0.125 g), and Al(OTf)3 (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH4Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO4). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:6)] to give a yellow oil; yield: 202 mg (0.72 mmol, 72%). 1H NMR (600 MHz, CDCl3): δ = 7.36–7.22 (m, 10 H), 6.43 (t, J = 16.2 Hz, 1 H), 6.19–6.05 (m, 1 H), 4.65 (s, 1 H), 4.54 (s, 1 H), 4.16 (d, J = 6.6 Hz, 1 H), 3.99 (d, J = 5.4 Hz, 1 H), 2.20 (d, J = 27.0 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 170.9, 133.1, 131.9, 128.9, 128.7, 128.6, 128.5, 128.2, 127.9, 127.7, 127.6, 127.4, 126.4, 124.5, 123.8, 50.9, 49.5, 48.1, 47.3, 21.7, 21.6. HRMS (ESI+): m/z [M + H]+ calcd for C18H20NS: 282.1311; found: 282.1314.