Synthesis 2016; 48(15): 2402-2412
DOI: 10.1055/s-0035-1562094
paper
© Georg Thieme Verlag Stuttgart · New York

Medium-Ring Stereocontrol in the Temporary Silicon-Tethered Ring-Closing Metathesis Approach to the Synthesis of Polyketide Fragments

P. Andrew Evans*
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Email: Andrew.Evans@chem.queensu.ca
,
Alen Čusak
b   Department of Chemistry, The University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
,
Aleksandr Grisin
a   Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada   Email: Andrew.Evans@chem.queensu.ca
,
Michael J. Lawler
c   Department of Chemistry, Indiana University, 800 E. Kirkwood, Avenue, Indiana, 47405, USA   Email: mpink@indiana.edu
,
Maren Pink
c   Department of Chemistry, Indiana University, 800 E. Kirkwood, Avenue, Indiana, 47405, USA   Email: mpink@indiana.edu
› Author Affiliations
Further Information

Publication History

Received: 07 December 2015

Accepted after revision: 07 April 2016

Publication Date:
18 May 2016 (online)


¯ To whom all correspondance pertaining to the crystal structure should be sent.

Abstract

The temporary silicon-tethered ring-closing metathesis of chiral non-racemic allylic and homoallylic alcohols affords unsymmetrical Z-configured trisubstituted olefins that readily undergo stereoselective hydroboration and dihydroxylation to provide a novel approach to masked polypropionate and polyol fragments present in an array of biologically important natural products. For example, this strategy provides a convenient method for the construction of polyol fragments relevant to the secondary metabolites amphidinol 3 and lophodiol A, which have antifungal and cytotoxic activity, respectively.

Supporting Information

 
  • References

    • 1a Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2013; 30: 237 ; and pertinent references cited within
    • 1b Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2014; 31: 160

      For selected examples of non-aldol methods for the synthesis of polyketide fragments, see:
    • 2a Epoxide Rearrangement: Jung ME, D’Amico DC. J. Am. Chem. Soc. 1997; 119: 12150
    • 2b Marshall-Tamaru Propargylation: Marshall JA, Adams ND. J. Org. Chem. 1999; 64: 5201
    • 2c Cyanohydrin Acetonide Alkylation: Sinz CJ, Rychnovsky SD. Top. Curr. Chem. 2001; 216: 51
    • 2d Directed Nitrile Oxide Cycloaddition: Bode JW, Fraefel N, Muri D, Carreira EM. Angew. Chem. Int. Ed. 2001; 40: 2082
    • 2e Acyl Halide-Aldehyde Cyclocondensation (AAC): Shen X, Wasmuth AS, Zhao J, Zhu C, Nelson SG. J. Am. Chem. Soc. 2006; 128: 7438
    • 2f C–C Bond Forming Transfer Hydrogenation: Dechert-Schmitt A.-MR, Schmitt DC, Gao X, Itoh T, Krische MJ. Nat. Prod. Rep. 2014; 31: 504 ; and pertinent references cited within

      For recent reviews on the development of temporary silicon-tethered ring-closing metathesis reactions and their application in synthesis, see:
    • 3a Evans PA In Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010. Chap. 8, 22
    • 3b Čusak A. Chem. Eur. J. 2012; 18: 5800

      For the homo- and cross-coupling of chiral non-racemic allylic alcohols, see:
    • 4a Evans PA, Murthy VS. J. Org. Chem. 1998; 63: 6768
    • 4b Evans PA, Cui J, Gharpure SJ, Polosukhin A, Zhang H.-R. J. Am. Chem. Soc. 2003; 125: 14702
  • 5 Evans PA, Cui J, Buffone GP. Angew. Chem. Int. Ed. 2003; 42: 1734

    • For a related process that provides E- and Z-trisubstituted silaketals, see:
    • 6a Hoye TR, Jeffrey CS, Tennakoon MA, Wang J, Zhao H. J. Am. Chem. Soc. 2004; 126: 10210
    • 6b Hoye TR, Jeon J, Kopel LC, Ryba TD, Tennakoon MA, Wang Y. Angew. Chem. Int. Ed. 2010; 49: 6151
    • 6c Matsui R, Seto K, Fujita K, Suzuki T, Nakazaki A, Kobayashi S. Angew. Chem. Int. Ed. 2010; 49: 10068 ; see also ref. 7
  • 7 The E-silaketals should facilitate the opposite diastereoisomer thereby further expanding the synthetic utility of this process.
  • 8 Still WC, Galynker I. Tetrahedron 1981; 37: 3981
  • 9 Grisin A, Evans PA. Chem. Sci. 2015; 6: 6407

    • For the challenges associated with the formation of eight-membered rings containing di- and trisubstituted alkenes using RCM, see:
    • 10a Miller SJ, Kim S.-H, Chen Z.-R, Grubbs RH. J. Am. Chem. Soc. 1995; 117: 2108
    • 10b Michaut A, Rodriguez J. Angew. Chem. Int. Ed. 2006; 45: 5740
  • 11 VanRheenen V, Kelly RC, Cha DY. Tetrahedron Lett. 1976; 17: 1973
  • 12 CCDC 1059620 contains the supplementary crystallographic data for the 3,5-dinitrobenzoate ester of 8a. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
    • 13a Cha JK, Christ WJ, Kishi Y. Tetrahedron Lett. 1983; 24: 3943
    • 13b Cha JK, Christ WJ, Kishi Y. Tetrahedron 1984; 40: 2247
  • 14 For a comprehensive review of studies on discodermolide biology and chemistry, see: Longley RE. Natural Products and Cancer Drug Discovery . Springer; New York: 2013: 39 , and pertinent references cited within
  • 15 For a recent approach to the trisubstituted olefin of (+)-discodermolide, see: Yu Z, Ely RJ, Morken JP. Angew. Chem. Int. Ed. 2014; 53: 9632
  • 16 For the isolation and original structural elucidation of amphidinol 3, see: Murata M, Matsuoka S, Matsumori N, Paul GK, Tachibana K. J. Am. Chem. Soc. 1999; 121: 870

    • For approaches toward the C20–C26 domain of AM3 (1), see:
    • 17a Flamme EM, Roush WR. Org. Lett. 2005; 7: 1411
    • 17b Paquette LA, Chang S.-K. Org. Lett. 2005; 7: 3111
    • 17c Huckins JR, de Vicente J, Rychnovsky SD. Org. Lett. 2007; 9: 4757
    • 17d Cossy J, Tsuchiya T, Reymond S, Kreuzer T, Colobert F, Markó IE. Synlett 2009; 2706
    • 17e Rival N, Hazelard D, Hanquet G, Kreuzer T, Bensoussan C, Reymond S, Cossy J, Colobert F. Org. Biomol. Chem. 2012; 10: 9418
    • 17f Rival N, Hanquet G, Bensoussan C, Reymond S, Cossy J, Colobert F. Org. Biomol. Chem. 2013; 11: 6829
    • 17g Tsuruda T, Ebine M, Umeda A, Oishi T. J. Org. Chem. 2015; 80: 859
  • 18 For the isolation and structure elucidation of lophodiol A, see: Sánchez MC, Ortega MJ, Zubía E, Carballo JL. J. Nat. Prod. 2006; 69: 1749