Synthesis 2016; 48(13): 2121-2129
DOI: 10.1055/s-0035-1561953
paper
© Georg Thieme Verlag Stuttgart · New York

Simple Modular Synthetic Approaches to Asymmetric NNN′′, NNC, or NNP-Type Amido Pincer Ligands: Synthesis, Characterisation, and Preliminary Ligation Studies

Khrystyna Herasymchuk
a   Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada   Email: gossage@ryerson.ca
,
Jennifer Huynh
a   Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada   Email: gossage@ryerson.ca
,
Alan J. Lough
b   Department of Chemistry, University of Toronto, Toronto, ON M5H 3S6, Canada   Email: alough@chem.utoronto.ca
,
Laura Roces Fernández
c   Departamento de Química Orgánica e Inorgánica, Facultad de Química, c/ Julián Clavería, n° 8, Universidad de Oviedo, 33006 Oviedo, Spain   Email: roceslaura@uniovi.es
,
Robert A. Gossage*
a   Department of Chemistry & Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada   Email: gossage@ryerson.ca
› Author Affiliations
Further Information

Publication History

Received: 23 January 2016

Accepted after revision: 23 February 2016

Publication Date:
11 April 2016 (online)


‡ Corresponding author for the crystallographic characterisation of compound 1.

§ Corresponding author for the crystallographic characterisation of compound 3m•oxide.

Abstract

A simple modular approach is presented which has been directed towards the synthesis of potentially monoanionic NNN′′, NNC, and NNP pincer-type ligands. These pincers incorporate an amide functionality derived from the skeletal structure of readily available 2-(2-aminophenyl)-4,5-dioxooxazoles. All of the pincers are synthesized in moderate yields (up to 74%) and are characterised by nuclear magnetic spectroscopy (NMR), elemental analyses, and infrared (IR) spectroscopy. X-ray crystallography is also performed on the chiral and achiral alkyl halide precursors and on an oxide derivative of a pincer with a NNP-atom donor set. A palladium derivative of one of the NNN′′-pincers is shown to be an active catalyst for the addition of an allyl group to various benzaldehydes using n-Bu3Sn(allyl) as allyl source.

Supporting Information

 
  • References

  • 1 New address: K. Herasymchuk, Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6 Canada.
  • 2 Undergraduate research participant.
    • 3a Chase PA, Gossage RA, van Koten G. Top. Organomet. Chem. 2016; 54: 1
    • 3b Pincer and Pincer-type Complexes: Applications in Organic Synthesis and Catalysis. Szabó KJ, Wendt OF. Wiley; Weinheim: 2014
    • 3c Topics in Organometallic Chemistry. Vol. 40. van Koten G, Milstein D. Springer; Heidelberg: 2013
    • 3d The Chemistry of Pincer Compounds. Morales-Morales D, Jensen CM. Elsevier; Amsterdam: 2007

      Pincer catalysts; selected reviews:
    • 4a Hänninen MM, Zamora MT, Hayes PG. Top. Organomet. Chem. 2016; 54: 93
    • 4b Melen RL, Gade LH. Top. Organomet. Chem. 2016; 54: 179
    • 4c Asay M, Morales-Morales D. Top. Organomet. Chem. 2016; 54: 239
    • 4d Kumar A, Goldman AS. Top. Organomet. Chem. 2016; 54: 307
    • 4e McDonald AR, Dijkstra HP. Top. Organomet. Chem. 2016; 54: 335
    • 4f Zell T, Milstein D. Acc. Chem. Res. 2015; 48: 1979
    • 4g O’Reilly ME, Veige AS. Chem. Soc. Rev. 2014; 43: 6325
    • 4h Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
    • 4i Deng Q.-H, Melen RL, Gade LH. Acc. Chem. Res. 2014; 47: 3162
    • 4j Younus HA, Ahmad N, Su W, Verpoort F. Coord. Chem. Rev. 2014; 276: 112
    • 4k van Koten G. J. Organomet. Chem. 2013; 730: 156
    • 4l Szabó KJ. Top. Organomet. Chem. 2013; 40: 203
    • 4m Wang Z.-X, Liu N. Eur. J. Inorg. Chem. 2012; 901
    • 4n Selander N, Szabó KJ. Chem. Rev. 2011; 111: 2048
    • 4o Choi J, Roy MacArthur H, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
    • 4p Milstein D. Top. Catal. 2010; 53: 915
    • 4q Moreno I, San Martin R, Inés B, Churruca F, Domínguez E. Inorg. Chim. Acta 2010; 363: 1903
    • 4r Selander N, Szabó KJ. Dalton Trans. 2009; 6267
    • 4s Szabó KJ. Synlett 2006; 811
    • 5a Font M, Ribas X. Top. Organomet. Chem. 2016; 54: 269
    • 5b Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
    • 5c Nguyen HH, Le CD, Pham CT, Trieu TN, Hagenbach A, Abram U. Polyhedron 2012; 48: 181
    • 5d Wieczorek B, Snelders DJ. M, Dijkstra HP, Versluis K, Lutz M, Spek AL, Egmond MR, Klein Gebbink RJ. M, van Koten G. Organometallics 2012; 31: 2810
    • 5e van Koten G, Klein Gibbink RJ. M. Dalton Trans. 2011; 40: 8731
    • 5f van Koten G. Top. Organomet. Chem. 2013; 40: 1
    • 5g Albrecht M, Lindner MM. Dalton Trans. 2011; 40: 8733
    • 5h Slagt MQ, van Zwieten DA. P, Moerkerk AJ. C. M, Klein Gebbink RJ. M, van Koten G. Coord. Chem. Rev. 2004; 248: 2275
    • 5i van der Boom ME, Milstein D. Chem. Rev. 2003; 103: 1759
    • 5j Albrecht M, van Koten G. Angew. Chem. Int. Ed. 2001; 40: 3750
  • 6 Decken A, Gossage RA, Yadav PN. Can. J. Chem. 2005; 83: 1185
  • 7 Baerlocher FJ, Bucur R, Decken A, Eisnor CR, Gossage RA, Jackson SM, Jolly L, Wheaton SL, Wylie RS. Aust. J. Chem. 2010; 63: 47
  • 8 Yadav PN, Beveridge RE, Blay J, Boyd AR, Chojnacka MW, Decken A, Deshpande AA, Gardiner MG, Hambley TW, Hughes MJ, Jolly L, Lavangie JA, MacInnis TD, McFarland SA, New EJ, Gossage RA. Med. Chem. Commun. 2011; 2: 274
    • 9a Gu X, Zhang L, Zhu X, Wang S, Zhou S, Wei Y, Zhang G, Mu X, Huang Z, Hong D, Zhang F. Organometallics 2015; 34: 4553
    • 9b Yang L, Zhang X, Mao P, Xiao Y, Bian H, Yuan J, Mai W, Qu L. RSC Adv. 2015; 5: 25723
    • 9c Davidson JJ, DeMott JC, Douvris C, Fafard CM, Bhuvanesh N, Chen C.-H, Herbert DE, Lee C, McCulloch BJ, Foxman BM, Ozerov OV. Inorg. Chem. 2015; 54: 2916
    • 9d DeMott JC, Bhuvananesh N, Ozerov OV. Chem. Sci. 2013; 4: 642
    • 9e Vasil’ev AA, Aleksenko VYu, Aleksanyan DV, Kozlov VA. Mendeleev Commun. 2013; 23: 344
    • 9f Venkat Ramani S, Pascualini ME, Ghiviriga I, Abboud KA, Veige AS. Polyhedron 2013; 64: 377
    • 9g Schneider S, Meiners J, Askevold B. Eur. J. Inorg. Chem. 2012; 412
    • 9h Nixon TD, Ward BD. Chem. Commun. 2012; 48: 11790
    • 9i Peters JC, Harkins SB, Brown SD, Day MW. Inorg. Chem. 2001; 40: 5083
    • 9j Durran SE, Elsegood MR. J, Hammond SR, Smith MB. Dalton Trans. 2010; 39: 7136
    • 9k Perez Garcia PM, Di Franco T, Epenoy A, Scopelliti R, Hu X. ACS Catal. 2016; 6: 258
    • 9l Ariafard A, Ghari H, Khaledi Y, Hossein Bagi A, Wierenga TS, Gardiner MG, Canty AJ. ACS Catal. 2016; 6: 60
    • 9m Corcos AR, Villanueva O, Walroth RC, Sharma SK, Bacsa J, Lancaster KM, MacBeth CE, Berry JF. J. Am. Chem. Soc. 2016; 138: 1796
    • 10a Gómez M, Muller G, Rocamura M. Coord. Chem. Rev. 1999; 193–195: 769
    • 10b Gossage RA, Yadav PN, MacInnis TD, Quail JW, Decken A. Can. J. Chem. 2009; 87: 368
    • 10c Decken A, Eisnor CR, Gossage RA, Jackson SM. Inorg. Chim. Acta 2006; 359: 1743
    • 10d Yadav PN, Barclay TM, Gossage RA. J. Nepal Chem. Soc. 2011; 28: 54
    • 11a Ito J, Nishiyama H. Top. Organomet. Chem. 2013; 40: 243
    • 11b Gossage RA. Dalton Trans. 2011; 40: 8755
    • 11c Nishiyama H, Ito J. Chem. Commun. 2010; 46: 203
    • 11d Nishiyama H, Ito J, Shiomi T, Hashimoto T, Miyakawa T, Kitase M. Pure Appl. Chem. 2008; 80: 743
    • 12a Allen KE, Heinekey DM, Goldman AS, Goldberg KI. Organometallics 2013; 32: 1579
    • 12b Chen T, He L.-P, Gong D, Yang L, Miao X, Eppinger J, Huang K.-W. Tetrahedron Lett. 2012; 53: 4409
    • 12c Kameo H, Ishii S, Nakazawa H. Dalton Trans. 2012; 41: 11386
    • 12d Chuchuryukin AV, Huang R, Lutz M, Chadwick JC, Spek AL, van Koten G. Organometallics 2011; 30: 2819
    • 12e Motoyama Y, Shimozono K, Nishiyama H. Inorg. Chim. Acta 2006; 359: 1725
  • 13 The use of the corresponding dibromo derivative, i.e., 2-bromoacetyl bromide, should be avoided as this leads to an inherently unstable bromo analogue of 1.
  • 14 It should be noted that weakly nucleophilic secondary amines such as pyrrole and carbazole do not lead to the desired ligand product analogues. The reaction was also ineffective, leading to a number of unidentified materials, when i-Pr2NH, Cy2NH, or N-methylamino-substituted phenols were used as reactants. The use of O-benzyl protected 2-(methylamino)phenol likewise led to a number of undesired byproducts; hence, all of these above reagents were thereafter abandoned for this study.
  • 15 Despite repeated attempts, compound 3k gave an unsatisfactory %N analysis, see experimental procedures.
  • 16 Farrell F, Albrecht M. Top. Organomet. Chem. 2016; 54: 45
  • 17 Pilarski LT, Szabó KJ. Curr. Org. Chem. 2011; 15: 3389
  • 18 Solin N, Kjellgren J, Szabó KJ. Angew. Chem. Int. Ed. 2003; 42: 3656
  • 19 Solin N, Kjellgren J, Szabó KJ. J. Am. Chem. Soc. 2004; 126: 7026
  • 20 Nakamura H, Iwama H, Yamamoto Y. J. Am. Chem. Soc. 1996; 118: 6641
  • 21 Button KM, Gossage RA. J. Heterocycl. Chem. 2003; 40: 513
  • 22 Gossage RA In Experiments in Green and Sustainable Chemistry. Roesky HW, Kennepohl DK. Wiley-VCH; Weinheim: 2009. Chap. 4, 19–2
  • 23 Bara JE. Ind. Eng. Chem. Res. 2011; 50: 13614
  • 24 Krebs R, Schomberg D, Schutzler R. Z. Naturforsch., B 1985; 40b: 282
  • 25 Petrov A, Jones RC, Vaughan DG, Lough AJ, Gossage RA. Crystals 2011; 1: 229; http://www.mdpi.com/journal/crystals
    • 26a Cabeza JA, da Silva I, del Río I, Gossage RA, Martínez-Méndez L, Miguel D. J. Organomet. Chem. 2007; 692: 4346
    • 26b Cabeza JA, da Silva I, del Río I, Gossage RA, Miguel D, Suárez M. Dalton Trans. 2006; 2450