Synlett 2016; 27(12): 1848-1853
DOI: 10.1055/s-0035-1561859
letter
© Georg Thieme Verlag Stuttgart · New York

Novel Methodology for the Efficient Synthesis of 3-Aryloxindoles: [1,2]-Phospha-Brook Rearrangement–Palladium-Catalyzed Cross-Coupling Sequence

Azusa Kondoh
a   Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan   Email: mterada@m.tohoku.ac.jp
,
Akira Takei
b   Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
,
Masahiro Terada*
a   Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan   Email: mterada@m.tohoku.ac.jp
b   Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
› Author Affiliations
Further Information

Publication History

Received: 07 March 2016

Accepted after revision: 30 March 2016

Publication Date:
07 April 2016 (online)


Abstract

A novel methodology for the efficient synthesis of 3-aryloxindoles from isatin derivatives was developed. The methodology involves the formation of an oxindole having a phosphate moiety at the C-3 position via the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis followed by palladium-catalyzed cross-coupling with aryl boron reagents. The one-pot synthesis of 3-aryloxindoles from isatin derivatives is also described.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Trost BM, Brennan MK. Synthesis 2009; 3003
    • 1b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1c Steven A, Overman LE. Angew. Chem. Int. Ed. 2007; 46: 5488
    • 1d Higuchi K, Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 1e Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 1f Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 1g Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381

      For selected recent examples, see:
    • 2a Wang Z, Kang T, Yao Q, Ji J, Liu X, Lin L, Feng X. Chem. Eur. J. 2015; 21: 7709
    • 2b Naganawa Y, Aoyama T, Nishiyama H. Org. Biomol. Chem. 2015; 13: 11499
    • 2c Badiola E, Fiser B, Gómez-Bengoa E, Mielgo A, Olaizola I, Urruzuno I, García JM, Odriozola JM, Razkin J, Oiarbide M, Palomo C. J. Am. Chem. Soc. 2014; 136: 17869
    • 2d Shirakawa S, Koga K, Tokuda T, Yamamoto K, Maruoka K. Angew. Chem. Int. Ed. 2014; 53: 6220
    • 2e Zhu X.-L, Xu J.-H, Cheng D.-J, Zhao L.-J, Liu X.-Y, Tan B. Org. Lett. 2014; 16: 2192
    • 2f Deng Q.-H, Bleith T, Wadepohl H, Gade LH. J. Am. Chem. Soc. 2013; 135: 5356
    • 2g Trost BM, Masters JT, Burns AC. Angew. Chem. Int. Ed. 2013; 52: 2260
    • 2h Zhong F, Dou X, Han X, Yao W, Zhu Q, Meng Y, Lu Y. Angew. Chem. Int. Ed. 2013; 52: 943
    • 2i Wang C, Yang X, Enders D. Chem. Eur. J. 2012; 18: 4832
  • 3 Bruce JM, Sutcliffe FK. J. Chem. Soc. 1957; 4789
  • 4 Fleming I, Loreto MA, Wallace IH. M, Michael JP. J. Chem. Soc., Perkin Trans. 1 1986; 349
    • 5a Wolfe JF, Sleevi MC, Goehring RR. J. Am. Chem. Soc. 1980; 102: 3646
    • 5b Goehring RR, Sachdeva YP, Pisipati JS, Cleevi MC, Wolfe JF. J. Am. Chem. Soc. 1985; 107: 435
    • 6a Shaughnessy KH, Hamann BC, Hartwig JF. J. Org. Chem. 1998; 63: 6546
    • 6b Lee S, Hartwig JF. J. Org. Chem. 2001; 66: 3402
    • 6c Ackermann L, Vicente R, Hofmann N. Org. Lett. 2009; 11. 4274

      For selected examples, see:
    • 7a Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
    • 7b Hamashima Y, Suzuki T, Takano H, Shimura Y, Sodeoka M. J. Am. Chem. Soc. 2005; 127: 10164
    • 7c Huang A, Kodanko JJ, Overman LE. J. Am. Chem. Soc. 2004; 126: 14043 ; see also ref. 2
    • 8a Durbin MJ, Willis MC. Org. Lett. 2008; 10: 1413
    • 8b Altman RA, Hyde AM, Huang X, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 9613
    • 8c Li P, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 6396
    • 8d Xiao Z.-K, Yin H.-Y, Shao L.-X. Org. Lett. 2013; 15: 1254
    • 8e Koch E, Takise R, Studer A, Yamaguchi J, Itami K. Chem. Commun. 2015; 51: 855
    • 9a Peng C, Zhang W, Yan G, Wang J. Org. Lett. 2009; 11: 1667
    • 9b Zhai C, Xing D, Jing C, Zhou J, Wang C, Wang D, Hu W. Org. Lett. 2014; 16: 2934
    • 10a Hayashi M, Nakamura S. Angew. Chem. Int. Ed. 2011; 50: 2249
    • 10b Coffinier D, El Kaïm L, Grimaud L. Synlett 2008; 1133
    • 10c Demir AS, Reis Ö, Esiringü I, Reis B, Baris S. Tetrahedron 2007; 63: 160
    • 10d Demir AS, Eymur S. J. Org. Chem. 2007; 72: 8527
    • 10e El Kaïm L, Gaultier L, Grimaud L, Dos Santos A. Synlett 2005; 2335
    • 10f Pachamuthu K, Schmidt RR. Chem. Commun. 2004; 1078
    • 10g Ruel R, Bouvier J.-P, Young RN. J. Org. Chem. 1995; 60: 5209
    • 10h Kuroboshi M, Ishihara T, Ando T. J. Fluorine Chem. 1988; 39: 293
    • 10i Bausch CC, Johnson JS. Adv. Synth. Catal. 2005; 347: 1207
    • 10j Demir AS, Reis Ö, İğdir AÇ, Esiringü İ, Eymur S. J. Org. Chem. 2005; 70: 10584
    • 10k Demir AS, Esiringü I, Göllü M, Reis Ö. J. Org. Chem. 2009; 74: 2197
    • 10l Demir AS, Reis B, Reis Ö, Eymür S, Göllü M, Tural S, Saglam G. J. Org. Chem. 2007; 72: 7439
    • 10m Corbett M, Uraguchi D, Ooi T, Johnson JS. Angew. Chem. Int. Ed. 2012; 51: 4685
    • 10n Horwitz MA, Tanaka N, Yokosaka T, Uraguchi D, Johnson JS, Ooi T. Chem. Sci. 2015; 6: 6086
    • 10o Horwitz MA, Zavesky BP, Martinez-Alvarado JI, Johnson JS. Org. Lett. 2016; 18: 36
    • 11a Kondoh A, Terada M. Org. Lett. 2013; 15: 4568
    • 11b Kondoh A, Aoki T, Terada M. Org. Lett. 2014; 16: 3528
    • 11c Kondoh A, Terada M. Org. Chem. Front. 2015; 2: 801
    • 11d Kondoh A, Aoki T, Terada M. Chem. Eur. J. 2015; 21: 12577

      For palladium-catalyzed cross-coupling reactions of benzylic phosphates, see:
    • 12a McLaughlin M. Org. Lett. 2005; 7: 4875
    • 12b Zhang P, Xu J, Gao Y, Li X, Tang G, Zhao Y. Synlett 2014; 25: 2928
    • 12c Shang R, Huang Z, Xiao X, Lu X, Fu Y, Liu L. Adv. Synth. Catal. 2012; 354: 2465
    • 12d Trost BM, Czabaniuk LC. Chem. Eur. J. 2013; 19: 15210
  • 13 Typical Procedure for the Synthesis of Oxindole Derivatives 2 Synthesis of 2a is representative. To a solution of 1a (1.0 g, 4.3 mmol) and diphenyl phosphite (0.92 mL, 4.8 mmol) in toluene (8.7 mL) was added i-Pr2NEt (75 μL, 0.43 mmol). The resulting mixture was stirred at room temperature for 10 min. The reaction was quenched with sat. aq NH4Cl, and the product was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na2SO4, and evaporated. The residue was purified by column chromatography (hexane–EtOAc, 2:1) to provide 2a (1.9 g, 4.1 mmol, 94%) as a colorless oil. Compound 2a: 1H NMR (600 MHz, CDCl3): δ = 1.08 (t, J = 7.2 Hz, 3 H), 3.63–3.95 (m, 2 H), 7.24–7.27 (m, 5 H), 7.28–7.31 (m, 1 H), 7.36–7.40 (m, 2 H), 7.52 (dd, J = 8.4, 1.2 Hz, 1 H), 7.54 (ddd, J = 7.2, 7.2, 1.2 Hz, 1 H), 7.59–7.62 (m, 1 H), 7.66 (ddd, J = 7.2, 7.2, 1.2 Hz, 1 H), 7.94 (dd, J = 7.8, 0.60 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 13.7, 62.0, 88.1, 93.6, 122.9, 123.2, 128.0, 128.16 (2 C), 128.23, 128.3, 130.0, 130.6, 131.2, 131.4, 132.2, 132.5, 134.7, 141.4, 141.7, 163.0, 188.5. 31P NMR (243 MHz, CDCl3): δ = –10.8. IR (ATR): 3061, 2984, 1748, 1731, 1691, 1597, 1496, 1442, 1197, 1020 cm–1. ESI-HRMS: m/z calcd for C24H18O3 [M + Na]+: 377.1148; found: 377.1148.

    • The reduction of α-halocarbonyl compounds and α-halosulfoxides, which is related to the formation of byproduct 5, was discussed in the literature, see:
    • 14a Lei A, Zhang X. Tetrahedron Lett. 2002; 43: 2525
    • 14b Rodoríguez N, Cuenca A, de Arellano CR, Medio-Simón M, Asensio G. Org. Lett. 2003; 5: 1705
    • 14c Rodoríguez N, Cuenca A, de Arellano CR, Medio-Simón M, Peine D, Asensio G. J. Org. Chem. 2004; 69: 8070
    • 14d Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L. J. Am. Chem. Soc. 2006; 128: 15048
    • 14e Peng Z.-Y, Wang J.-P, Cheng J, Xie X.-M, Zhang Z. Tetrahedron 2010; 66: 8238
  • 15 Yamamoto Y, Takizawa M, Yu X.-Q, Miyaura N. Angew. Chem. Int. Ed. 2008; 47: 928
  • 16 Typical Procedure for the Synthesis of 3-Aryloxindoles 4 The reaction of 2a and 3e is representative (Table 1, entry 18). Pd2(dba)3 (6.8 mg, 7.5 μmol) and XPhos (14 mg, 30 μmol) were dissolved in toluene (0.60 mL), and the solution was stirred for 15 min. Compound 2a (0.14 g, 0.30 mmol) in toluene (2.4 mL), NaHCO3 (50 mg, 0.60 mmol), 3e (0.11 g, 0.45 mmol), and H2O (1.5 mL) were sequentially added, and the resulting mixture was then warmed to 60 °C. After stirred for 7 h, the reaction was quenched with sat. aq NH4Cl, and the product was extracted with EtOAc. The combined organic layer was dried over Na2SO4 and evaporated. The crude mixture was purified by column chromatography (hexane–EtOAc, 4:1) to afford 4aa (72 mg, 0.24 mmol, 80%) as a white solid. Compound 4aa: 1H NMR (400 MHz, CDCl3): δ = 4.74 (s, 1 H), 4.90 (d, J = 15.6 Hz, 1 H), 5.00 (d, J = 15.6 Hz, 1 H), 6.79 (d, J = 7.8 Hz, 1 H), 7.02 (dd, J = 7.2, 7.2 Hz, 1 H), 7.14–7.18 (m, 1 H), 7.18–7.24 (m, 3 H), 7.24–7.37 (m, 8 H). 13C NMR (100 MHz, CDCl3): δ =  43.9, 52.0, 109.2, 122.7, 125.1, 127.3, 127.59, 127.62, 128.3, 128.4, 128.8, 128.89, 128.92, 135.9, 136.7, 143.6, 176.1.
  • 17 The exploratory investigation for reaction conditions are summarized in the Supporting Information.
  • 18 With these substrates 2, the reaction without NaHCO3 provided almost the same or slightly better yields than those obtained with NaHCO3.
  • 19 Procedure for the One-Pot Synthesis of 3-Aryloxindoles To a solution of 1a (50 mg, 0.21 mmol) and diphenyl phosphite (45 μL, 0.23 mmol) in toluene (0.42 mL) was added i-Pr2NEt (3.6 μL, 21 μmol). The resulting mixture was then stirred at room temperature for 10 min. A stock solution of Pd2(dba)3 (4.8 mg, 5.3 μmol) and XPhos (10 mg, 21 μmol) in toluene (0.42 mL), toluene (3.4 mL), NaHCO3 (35 mg, 0.42 mmol), 3e (77 mg, 0.31 mmol), and H2O (2.1 mL) were added sequentially, and the resulting mixture was then warmed to 60 °C. After stirred for 7 h, the reaction was quenched with sat. aq NH4Cl, and the product was extracted with EtOAc. The combined organic layer was dried over Na2SO4 and evaporated. The residue was purified by column chromatography (hexane–EtOAc, 4:1) to provide 4aa (43 mg, 0.14 mmol, 68%) as a white solid.