Synthesis 2016; 48(13): 2112-2120
DOI: 10.1055/s-0035-1561593
paper
© Georg Thieme Verlag Stuttgart · New York

Regioselective Michael Addition of Anthrone to Methylene­indolinones

Huaili Zhao
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao, 266109, P. R. of China
,
Xiaoxiao Wang
b   College of Chemical Engineering, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao, 266042, P. R. of China   Email: chemjianxiao@163.com
,
Liang Wang*
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao, 266109, P. R. of China
,
Jian Xiao*
a   College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Qingdao, 266109, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 10 December 2015

Accepted after revision: 04 March 2016

Publication Date:
18 April 2016 (online)


Abstract

Regioselective Michael addition of anthrone to methylene­indolinones catalyzed by Et3N was developed. The reaction furnished structurally interesting hybrid derivatives of oxindoles and anthrones in high yield, high regioselectivity, and high diastereoselectivity. Electronic effects had a dramatic influence on both the regioselectivity and ­diastereoselectivity, which could be finely tuned by changing the substituents on the methyleneindolinones.

Supporting Information

 
  • References

    • 1a Lerchner A, Carreira EM. J. Am. Chem. Soc. 2002; 124: 14826
    • 1b Lerchner A, Carreira EM. Chem. Eur. J. 2006; 12: 8208
    • 2a Nussbaum F.-v, Danishefsky SJ. Angew. Chem. Int. Ed. 2000; 39: 2175
    • 2b Overman LE, Rosen MD. Angew. Chem. Int. Ed. 2000; 39: 4596
    • 2c Meyers C, Carreira EM. Angew. Chem. Int. Ed. 2003; 42: 694
    • 2d Sebahar PR, Williams RM. J. Am. Chem. Soc. 2000; 122: 5666
    • 2e Marti C, Carreira EM. J. Am. Chem. Soc. 2005; 127: 11505
    • 2f Bagul TD, Lakshmaiah G, Kawabata T, Fuji K. Org. Lett. 2002; 4: 249
  • 3 Ready JM, Reisman SE, Hirata M, Weiss MM, Tamaki K, Ovaska TV, Wood JL. Angew. Chem. Int. Ed. 2004; 43: 1270
  • 4 Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 5a Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 5b Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 5c Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. Int. Ed. 2014; 53: 9462
    • 5d Li JL, Sahoo B, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10515
    • 5e Chen DF, Zhao F, Hu Y, Gong LZ. Angew. Chem. Int. Ed. 2014; 53: 10763
  • 6 Tan B, Candeias NR, Barbas III CF. Nat. Chem. 2011; 3: 473
    • 7a Kuttruff CA, Zipse H, Trauner D. Angew. Chem. Int. Ed. 2011; 50: 1402
    • 7b Koyama Y, Yamaguchi R, Suzuki K. Angew. Chem. Int. Ed. 2008; 47: 1084
    • 7c Bringmann G, Menche D. Angew. Chem. Int. Ed. 2001; 40: 1687
    • 7d Tietze LF, Singidi RR, Gericke KM. Chem. Eur. J. 2007; 13: 9939
    • 7e Bringmann G, Menche D, Kraus J, Mühlbacher J, Peters K, Peters E.-M, Brun R, Bezabih M, Abegaz BM. J. Org. Chem. 2002; 67: 5595
    • 7f Kaiser F, Schwink L, Velder J, Schmalz H.-G. J. Org. Chem. 2002; 67: 9248
    • 7g Podlesny EE, Kozlowski MC. Org. Lett. 2012; 14: 1408
    • 7h Tietze LF, Singidi RR, Gericke KM. Org. Lett. 2006; 8: 5873
    • 8a Wu C, Li W, Yang J, Liang X, Ye J. Org. Biomol. Chem. 2010; 8: 3244
    • 8b Zea A, Valero G, Alba A.-NR, Moyano A, Rios R. Adv. Synth. Catal. 2010; 352: 1102
    • 8c Lee H.-J, Chae Y.-M, Kim D.-Y. Bull. Korean Chem. Soc. 2011; 32: 2875
  • 9 Bai J.-F, Guo Y.-L, Peng L, Jia L.-N, Xu X.-Y, Wang L.-X. Tetrahedron 2013; 69: 1229
    • 10a Peng B, Cheng K.-J, Ma D. Chin. J. Chem. 2000; 18: 411
    • 10b Akalay D, Dürner G, Göbel MW. Eur. J. Org. Chem. 2008; 2365
    • 10c Shen J, Nguyen TT, Goh Y.-P, Ye W, Fu X, Xu J, Tan C.-H. J. Am. Chem. Soc. 2006; 128: 13692
    • 11a Jiang X, Zhang X, Sun Y, Wang Y, Yao J, Wang R. Adv. Synth. Catal. 2012; 354: 917
    • 11b Cao Y, Jiang X, Liu L, Shen F, Zhang F, Wang R. Angew. Chem. Int. Ed. 2011; 50: 9124
    • 11c Wang LL, Bai JF, Peng L, Qi LW, Jia LN, Guo YL, Luo XY, Xu XY, Wang LX. Chem. Commun. 2012; 48: 5175
    • 11d Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R. J. Am. Chem. Soc. 2010; 132: 15328
    • 11e Chen W.-B, Wu Z.-J, Hu J, Cun L.-F, Zhang X.-M, Yuan W.-C. Org. Lett. 2011; 13: 2472
    • 11f Li Y.-M, Li X, Peng F.-Z, Li Z.-Q, Wu S.-T, Sun Z.-W, Zhang H.-B, Shao Z.-H. Org. Lett. 2011; 6200
    • 12a Liu Y, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
    • 12b Tan B, Hernandez-Torres G, Barbas CF. J. Am. Chem. Soc. 2011; 133: 12354
    • 12c Zheng H, He P, Liu Y, Zhang Y, Liu X, Lin L, Feng X. Chem. Commun. 2014; 50: 8794
    • 13a Reddy Gajulapalli VP, Vinayagam P, Kesavan V. RSC Adv. 2015; 5: 7370
    • 13b Kumar A, Chimni SS. Beilstein J. Org. Chem. 2014; 10: 929
    • 13c Wang X.-W, Qiao C, Pan F.-F, Yu W, Qi Z.-H. Synthesis 2014; 46: 1143
    • 13d Huang XF, Zhang YF, Qi ZH, Li NK, Geng ZC, Li K, Wang XW. Org. Biomol. Chem. 2014; 12: 4372
    • 14a Xiao J. Org. Lett. 2012; 14: 1716
    • 14b Xiao J, Zhao K, Loh TP. Chem. Commun. 2012; 48: 3548
    • 14c Xiao J, Lu Y.-P, Liu Y.-L, Wong P.-S, Loh T.-P. Org. Lett. 2011; 13: 876
    • 14d Xiao J, Xu F.-X, Lu Y.-P, Loh T.-P. Org. Lett. 2010; 12: 1220
    • 14e Xiao J, Zhao K, Loh TP. Chem. Asian J. 2011; 6: 2890
  • 15 Wang G, Liu X, Huang T, Kuang Y, Lin L, Feng X. Org. Lett. 2013; 15: 76