Synlett 2016; 27(09): 1375-1378
DOI: 10.1055/s-0035-1561564
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Linker Isomers of Quinolin-6-yloxyacetamide Fungicides through Newman–Kwart Rearrangement

Fiona Murphy Kessabi
Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland   Email: clemens.lamberth@syngenta.com
,
Laura Quaranta
Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland   Email: clemens.lamberth@syngenta.com
,
Renaud Beaudegnies
Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland   Email: clemens.lamberth@syngenta.com
,
Clemens Lamberth*
Syngenta Crop Protection AG, Chemical Research, Schaffhauserstrasse 101, 4332 Stein, Switzerland   Email: clemens.lamberth@syngenta.com
› Author Affiliations
Further Information

Publication History

Received: 17 December 2015

Accepted after revision: 11 January 2016

Publication Date:
08 February 2016 (online)


Abstract

Novel quinolin-6-ylthioacetamides and quinolin-6-ylpropanamides have been prepared. They are linker isomers of quinolin-6-yloxyacetamide fungicides in which the oxygen atom of the O,S-acetal in the original lead structures has been replaced by either a sulfur atom or a methylene bridge. The Newman–Kwart rearrangement proved to be highly useful for the concise synthesis of the quinolin-6-ylthioacetamides from available quinolinol building blocks.

 
  • References and Notes

  • 1 Lamberth C, Murphy Kessabi F, Beaudegnies R, Quaranta L, Trah S, Berthon G, Cederbaum F, Knauf-Beiter G, Grasso V, Bieri S, Corran A, Thacker U. Bioorg. Med. Chem. 2014; 22: 3922
  • 2 Beaudegnies R, Quaranta L, Murph Kessabi F, Lamberth C, Knauf-Beiter G, Fraser T. Bioorg. Med. Chem. 2015; 23: 444
  • 3 Cage P, Furber M, Luckhurst C, Perry M, Springthorpe B (AstraZeneca) PCT application WO 2007/102767
  • 4 Bobileva O, Bokaldere R, Gailite V, Kaula I, Ikaunieks M, Duburs G, Petrovska R, Mandrika I, Klovins J, Loza E. Bioorg. Med. Chem. 2014; 22: 3654
  • 5 Maezaki H, Banno Y, Miyamoto Y, Moritou Y, Asakawa T, Kataoka O, Takeuchi K, Suzuki N, Ikedo K, Kosaka T, Sasaki M, Tsubotani S, Tani A, Funami M, Yamamoto Y, Tawada M, Aergeerts K, Yano J, Oi S. Bioorg. Med. Chem. 2011; 19: 4482
  • 6 Lamberth C, Murph Kessabi F, Beaudegnies R, Quaranta L, Trah S, Berthon G, Cederbaum F, Vettiger T, Prasanna CS. Synlett 2014; 25: 858
    • 7a Lloyd-Jones GC, Moseley JD, Renny JS. Synthesis 2008; 661
    • 7b Zonta C, De Lucchi O, Volpicelli R, Cotarca L. Top. Curr. Chem. 2007; 275: 131

      For some recent applications of the Newman–Kwart reaction, see:
    • 8a Novakova V, Miletin M, Filandrova T, Lenco J, Ruzicka A, Zimcik P. J. Org. Chem. 2014; 79: 2082
    • 8b Caproiu MT, Dumitrascu F, Shova S, Chirita IC, Missir AV, Cioroianu D.-M. Tetrahedron Lett. 2014; 55: 4011
    • 8c Sorensen A, Rasmussen B, Agarwal S, Schau-Magnussen M, Solling TI, Pittelkow M. Angew. Chem. Int. Ed. 2013; 52: 12346
    • 8d Gjoka B, Romano F, Zonta C, Licini G. Eur. J. Org. Chem. 2011; 5636
    • 8e Mondragon A, Monsalvo I, Regla I, Castillo I. Tetrahedron Lett. 2010; 51: 767
    • 8f Burns M, Lloyd-Jones GC, Moseley JD, Renny JS. J. Org. Chem. 2010; 75: 6347
    • 8g Alarjin M, Marin-Luna M, Ortin M.-M, Sanchez-Andrada P, Vidal A. Tetrahedron 2009; 65: 2579
    • 8h Cantillana T, Sundström M, Bergman A. Chemosphere 2009; 76: 805
    • 8i Tilstam U, Defrance T, Giard T, Johnson MD. Org. Process Res. Dev. 2009; 13: 321
    • 9a Mullican MD, Sorenson RJ, Connor DT, Thueson DO, Kennedy JA, Conroy MC. J. Med. Chem. 1991; 34: 2186
    • 9b Corral C, Lissavetzky J, Valdeolmillos AM. Synthesis 1984; 172
  • 10 Horning DE, Muchowski JM. Can. J. Chem. 1973; 51: 2349
  • 12 Harvey JN, Jover J, Lloyd-Jones GC, Moseley JD, Murray P, Renny JS. Angew. Chem. Int. Ed. 2009; 48: 7612
  • 13 Perkowski AJ, Cruz CL, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 15684
  • 14 Quinoline-Based Newman–Kwart Rearrangement; Typical Procedure for 4 → 7: 1,4-Diazabicyclo[2.2.2]octane (DABCO, 2.8 g, 25 mmol) was added in one portion to a solution of 3-bromo-8-methylquinolin-6-ol (4; 2.4 g, 10 mmol) in N,N-dimethylformamide (10 mL) at room temperature. Subsequently, N,N-dimethylthiocarbamoyl chloride (1.5 g, 12.5 mmol) was added in one portion and the resulting dark solution was heated to 65 °C for 30 min, during which it became orange. The reaction mixture was poured onto ice-water and acidified to pH 3 with 6 M hydrochloric acid. The precipitate was filtered off, washed with water and recrystallised from ethanol to deliver O-[(3-bromo-8-methyl-6-quinolyl)] N,N-dimethylcarbamothioate 5 (2.8 g). This cream-coloured powder was heated to 240 °C for 2.5 h with stirring. After cooling the flask to room temperature, the reaction mixture was diluted with ethyl acetate and purified by chromatography on silica gel (ethyl acetate–heptane, 4:6) to afford S-[(3-bromo-8-methyl-6-quinolyl)] N,N-dimethylcarbamothioate (6; 2.4 g). This intermediate was added to a solution of potassium hydroxide (1.1 g, 20 mmol) in a degassed mixture of methanol (5 mL) and tetrahydrofuran (12 mL). The resulting yellow-orange suspension was stirred for 18 h at room temperature, then poured into ice-cold saturated aqueous ammonium chloride solution and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, filtered and evaporated under reduced pressure The residue was dried under high vacuum to deliver 3-bromo-8-methylquinolin-6-thiol (7; 2.0 g, 7.9 mol, 79 % from 4). 1H NMR (400 MHz, CDCl3): δ = 2.72 (s, 3 H), 3.63 (s, 1 H), 7.40–7.46 (m, 2 H), 8.11 (d, J = 2.2 Hz, 1 H), 8.82 (d, J = 2.3 Hz, 1 H). LC-MS: tR = 1.94 min; MS: m/z = 256 [M + 1]+.
  • 15 Analytical data of final products:2: 1H NMR (CDCl3): δ = 1.09 (s, 9 H), 2.75 (s, 3 H), 3.62 (s, 3 H), 4.93 (s, 1 H), 6.02 (br s, 1 H), 7.68 (d, J = 2.1 Hz, 1 H), 7.78 (d, J = 2.1 Hz, 1 H), 8.23 (d, J = 2.0 Hz, 1 H), 8.90 (d, J = 2.2 Hz, 1 H). LC-MS: tR = 1.99 min; MS: m/z = 399 [M+1]+. 3: 1H NMR (CDCl3): δ = 1.30 (s, 9 H), 2.08 (s, 3 H), 3.09 (q, 1 H), 3.36–3.47 (m, 2 H), 6.41 (br s, 1 H), 7.53–7.60 (m, 2 H), 7.97 (d, J = 2.3 Hz, 1 H), 8.21 (d, J = 2.2 Hz, 1 H), 8.82 (d, J = 2.1 Hz, 1 H). LC-MS: tR = 1.87 min; MS: m/z = 383 [M+1]+. 13: 1H NMR (CDCl3): δ = 1.28 (s, 3 H), 1. 33 (s, 3 H), 1.72 (s, 3 H), 3.64 (s, 3 H), 4.96 (s, 1 H), 6.25 (br s, 1 H), 7.82 (dd, J = 2.1, 10.8 Hz, 1 H), 7.95–8.01 (m, 2 H), 8.27 (d, J = 2.2 Hz, 1 H), 8.89 (d, J = 2.0 Hz, 1 H). LC-MS: tR = 1.85 min; MS: m/z = 409 [M+1]+. 14: 1H NMR (CDCl3): δ = 1.57 (s, 6 H), 1.78 (s, 3 H), 2.29 (s, 3 H), 4.66 (s, 1 H), 6.61 (br s, 1 H), 7.75 (dd, J = 2.0, 11.1 Hz, 1 H), 7.82 (d, J = 2.3 Hz, 1 H), 8.02 (d, J = 2.2 Hz, 1 H), 8.27 (d, J = 2.1 Hz, 1 H), 8.88 (d, J = 2.3 Hz, 1 H). LC-MS: tR = 1.92 min; MS: m/z = 425 [M+1]+. 15: 1H NMR (CDCl3): δ = 1.12 (t, J = 7.3 Hz, 3 H), 1.50 (s, 6 H), 1.73 (s, 3 H), 1.88–2.09 (m, 2 H), 3.70 (t, J = 7.4 Hz, 1 H), 6.63 (br s, 1 H), 7.61–7.66 (m, 2 H), 7.98 (d, J = 2.2 Hz, 1 H), 8.21 (d, = 2.0 Hz, 1 H), 8.84 (d, J = 2.1 Hz, 1 H). LC-MS: tR = 1.92 min; MS: m/z = 407 [M+1]+
  • 16 Howitz J, Philipp J. Justus Liebigs Ann. Chem. 1913; 396: 23
    • 17a Saudi MN. S, Gaafar MR, El-Azzouni MZ, Ibrahim MA, Eissa MM. Med. Chem. Res. 2008; 17: 541
    • 17b Wardakhan WW. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 2051
    • 17c Anselmi E, Blazejewski J.-C, Wakselman C. J. Fluorine Chem. 2001; 107: 315
    • 17d Gairns RS, Grant RD, Moody CJ, Rees CW, Tsoi SC. J. Chem. Soc., Perkin Trans. 1 1986; 483
    • 17e Horner L, Renth E.-O. Justus Liebigs Ann. Chem. 1967; 703: 37
    • 18a Watanabe S, Ikishima S, Matsuo T, Yoshida K. J. Am. Chem. Soc. 2001; 123: 8402
    • 18b Jacobi PA, Lee K. J. Am. Chem. Soc. 2000; 122: 4295
    • 18c Jacobi PA, Lee K. J. Am. Chem. Soc. 1997; 119: 3409
    • 18d Moritani Y, Fukushima C, Miyagishima T, Ohmizu H, Iwasaki T. Bull. Chem. Soc. Jpn. 1996; 69: 2281