Synthesis 2016; 48(08): 1147-1158
DOI: 10.1055/s-0035-1561380
paper
© Georg Thieme Verlag Stuttgart · New York

Direct Access to Acylated Azobenzenes and Amide Compounds by Reaction of Azoarenes with Benzylic Ethers as Acyl Equivalents

Gang Hong
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Alfred Njasotapher Aruma
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Xiaoyan Zhu
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Shengying Wu*
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
,
Limin Wang*
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: wanglimin@ecust.edu.cn   Email: wsy1986wsy@126.com
› Author Affiliations
Further Information

Publication History

Received: 26 November 2015

Accepted after revision: 14 January 2016

Publication Date:
17 February 2016 (online)


Abstract

Described herein is the use of N=N double bond of azobenzene as both directing group and radical acceptor in one-reaction protocol for the first time. An efficient pathway for the Pd-catalyzed regiospecific ortho-acylation of azoarenes using benzylic ethers as acyl equivalents has been achieved. In the absence of palladium catalyst, amide compounds were formed by the reaction of azoarenes with benzylic ethers under certain conditions. Various mono-acylazobenzene and amide compounds were obtained in good yields (35 examples). The mono-acylated products and amide products could be easily controlled by palladium catalyst.

Supporting Information

 
  • References

    • 1a Puntoriero F, Ceroni P, Balzani V, Bergamini G, Voegtle F. J. Am. Chem. Soc. 2007; 129: 10714
    • 1b Muraoka T, Kinbar K, Aida T. Nature 2006; 440: 512
    • 1c Papagiannouli I, Iliopoulos K, Gindre D, Sahraoui B, Krupka O, Smokal V, Kolendo A, Couris S. Chem. Phys. Lett. 2012; 554: 107
    • 1d Harada A. Acc. Chem. Res. 2001; 34: 456
    • 1e Banghart MR, Mourot A, Fortin DL, Yao JZ, Kramer RH, Trauner D. Angew. Chem. Int. Ed. 2009; 48: 9097

      Selected examples:
    • 2a Yin Z, Jiang X, Sun P. J. Org. Chem. 2013; 78: 10002
    • 2b Dong J, Jin B, Sun P. Org. Lett. 2014; 16: 4540
    • 2c Ryu T, Min J, Choi W, Jeon WH, Lee PH. Org. Lett. 2014; 16: 2810
    • 2d Ma X.-T, Tian S.-K. Adv. Synth. Catal. 2013; 355: 337
    • 2e Hong G, Mao D, Wu S, Wang L. J. Org. Chem. 2014; 79: 10629
    • 2f Jia X, Han J. J. Org. Chem. 2014; 79: 4180
    • 2g Li H, Xi X, Wang L. Chem. Commun. 2014; 50: 4218
    • 2h Son J.-Y, Kim S, Jeon WH, Lee PH. Org. Lett. 2015; 17: 2518
    • 2i Han J, Pan C, Jia X, Zhu C. Org. Biomol. Chem. 2014; 12: 8603
    • 2j Deng H, Li H, Wang L. Org. Lett. 2015; 17: 2450
    • 2k Miyamura S, Tsurugi H, Satoh T, Miura M. J. Organomet. Chem. 2008; 693: 2438
    • 2l Yan X, Yi X, Xi C. Org. Chem. Front. 2014; 1: 657
  • 3 Li H, Li P, Wang L. Org. Lett. 2013; 15: 620
    • 4a Li H, Li P, Tan H, Wang L. Chem. Eur. J. 2013; 19: 14432
    • 4b Li H, Li P, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170
    • 5a Xiong F, Qian C, Lin D, Zeng W, Lu X. Org. Lett. 2013; 15: 5444
    • 5b Chen D, Pi C, Cui X, Wu Y. J. Org. Chem. 2014; 79: 2955
    • 5c Xu Z, Xiang B, Sun P. RSC Adv. 2013; 3: 1679
    • 6a Tang H, Qian C, Lin D, Jiang H, Zeng W. Adv. Synth. Catal. 2014; 356: 519
    • 6b Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
  • 7 Qian C, Lin D, Deng Y, Zhang X, Jiang H, Miao G, Zeng W. Org. Biomol. Chem. 2014; 12: 5866
  • 8 Wuts PG. M, Green TW. Protective Groups in Organic Synthesis . 4th ed. Wiley; New York: 2007: 102
  • 9 Markees DG. J. Org. Chem. 1958; 23: 1490
  • 10 Pradhan PP, Bobbitt JM, Bailey WF. J. Org. Chem. 2009; 74: 9524
  • 11 Nishiguchi T, Bougauchi M. J. Org. Chem. 1989; 54: 3001
  • 12 Mayhoub AS, Talukdar A, Cushman M. J. Org. Chem. 2010; 75: 3507
  • 13 Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 14a Mayhoub AS, Talukdar A, Cushman M. J. Org. Chem. 2010; 75: 3507
    • 14b Markees DG. J. Org. Chem. 1958; 23: 1490
    • 14c Shen Z, Dai J, Xiong J, He X, Mo W, Hu B, Sun N, Hu X. Adv. Synth. Catal. 2011; 353: 3031
    • 14d Nishiguchi T, Bougauchi M. J. Org. Chem. 1989; 54: 3001
    • 14e Khatun N, Banerjee A, Santra SK, Ali W, Patel BK. RSC Adv. 2015; 5: 36461
    • 15a Han S, Sharma S, Park J, Kim M, Shin Y, Mishra NK, Bae JJ, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2014; 79: 275
    • 15b Park J, Han SH, Sharma S, Han S, Shin Y, Mishra NK, Kwak JH, Lee CH, Lee J, Kim IS. J. Org. Chem. 2014; 79: 4735
    • 16a Vishnoi S, Agrawal V, Kasana VK. J. Agric. Food Chem. 2009; 57: 3261
    • 16b Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 16c Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243

      Selected examples:
    • 17a Wang G, Yu Q, Wang J, Wang S, Chen S, Yu X. RSC Adv. 2013; 3: 21306
    • 17b Kotha SS, Badigenchala S, Sekar G. Adv. Synth. Catal. 2015; 357: 1437
    • 17c Han S, Mishra NK, Sharma S, Park J, Choi M, Lee S.-Y, Oh JS, Jung YH, Kim IS. J. Org. Chem. 2015; 80: 8026
    • 17d Ghosh SC, Ngiam JS. Y, Seayad AM, Tuan DT, Chai CL. L, Chen A. J. Org. Chem. 2012; 77: 8007
    • 17e Vanjari R, Guntreddi T, Singh KN. Org. Lett. 2013; 15: 4908
    • 17f Wang Y, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2012; 51: 7250
    • 18a Hong G, Mao D, Zhu X, Wu S, Wang L. Org. Chem. Front. 2015; 2: 985
    • 18b Hong G, Wu S, Zhu X, Mao D, Wang L. Tetrahedron 2016; 72: 436
    • 19a Ikeda T, Tsu O. Science 1995; 268: 1873
    • 19b Huang JM, Kuo JF, Chen CY. J. Appl. Polym. Sci. 1995; 55: 1217
    • 19c Kimura K, Suzuki T, Yokoyama M. J. Phys. Chem. 1990; 94: 6090
    • 20a Zhang D, Cui XL, Yang F, Zhang Q, Zhu Y, Wu YJ. Org. Chem. Front. 2015; 2: 951
    • 20b Sun M, Hou L.-K, Chen XX, Yang X.-J, Sun W, Zhang Y.-S. Adv. Synth. Catal. 2014; 356: 3789
    • 20c Li HJ, Li PH, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170
    • 20d Li HJ, Xie XY, Wang L. Chem. Commun. 2014; 50: 4218
  • 21 Lian Y, Bergman RG, Lavis LD, Ellman JA. J. Am. Chem. Soc. 2013; 135: 7122
  • 22 Racowski JM, Dick AR, Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
  • 23 Powers DC, Ritter T. Nat. Chem. 2009; 1: 302
  • 24 Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
    • 25a Gellert BA, Kahlcke N, Feurer M, Roth S. Chem. Eur. J. 2011; 17: 12203
    • 25b Kim S, Chung KN, Yang S. J. Org. Chem. 1987; 52: 3917
  • 26 Li Z.-Y, Li D.-D, Wang G.-W. J. Org. Chem. 2013; 78: 10414
  • 27 Tan BY. H, Teo YC. Org. Biomol. Chem. 2014; 12: 7478
  • 28 Wang QQ, Deng YQ, Shi F. Catal. Sci. Technol. 2014; 4: 1710
  • 29 Xiao FH, Liu Y, Tang CL, Deng GJ. Org. Lett. 2012; 14: 984