Synlett 2016; 27(08): 1245-1250
DOI: 10.1055/s-0035-1561367
letter
© Georg Thieme Verlag Stuttgart · New York

Remote Functionalization in Nicholas Reactions of Vinylogous γ-Carbonyl Cations

Aqsa Mahmood
a   Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada   Email: jgreen@uwindsor.ca
b   St. Clair College of Applied Arts and Technology, Windsor, ON, N9A 6S4, Canada
,
Rebecca Ngenzi
a   Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada   Email: jgreen@uwindsor.ca
,
Page M. Penner
a   Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada   Email: jgreen@uwindsor.ca
,
James R. Green*
a   Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada   Email: jgreen@uwindsor.ca
› Author Affiliations
Further Information

Publication History

Received: 21 December 2015

Accepted: 20 January 2016

Publication Date:
08 February 2016 (online)


Abstract

The Nicholas reactions of Co2(CO)6 complexes of allyl/propargyl alcohol–ynoates and ynone ethylene acetals give selective to exclusive reaction with nucleophiles at the site ε to the carbonyl or carbonyl equivalent. For nucleophiles giving modest selectivity in the above cases, the analogous Nicholas reactions may be accomplished with propargyl acetate–Co2(CO)6 complexes of conjugated enynoates, to give complex ε selectivity.

Supporting Information

 
  • References and Notes


    • For recent umpolung synthesis reviews, see:
    • 1a Streuff J. Synthesis 2013; 45: 281
    • 1b Eymur S, Gollu M, Tanyeli C. Turk. J. Chem. 2013; 37: 586
    • 1c Miyata O, Miyoshi T, Ueda M. ARKIVOC 2013; (ii): 60
  • 2 For a recent example, see: Henkie JR, Dhaliwal S, Green JR. Synlett 2012; 23: 2371

    • For Pd, see:
    • 4a Tsuji J, Ueno H, Kobayashi Y, Okumoto H. Tetrahedron Lett. 1981; 21: 2573
    • 4b Nemoto T, Fukuda T, Matsumoto T, Hitomi T, Hamada Y. Adv. Synth. Catal. 2005; 347: 1504

    • For Mo, see:
    • 4c Trost BM, Lautens M. Organometallics 1983; 2: 1687
    • 4d Zhang Y, Liebeskind L. J. Am. Chem. Soc. 2005; 127: 11258

    • For Ir, see:
    • 4e Baeza A, Casas J, Nájera C, Sansano JM. J. Org. Chem. 2006; 71: 3837
    • 5a Bambal R, Kemmitt RD. W. J. Chem. Soc., Chem. Commun. 1988; 734
    • 5b Harrington PA, Kerr MA. Tetrahedron Lett. 1997; 38: 5949
    • 5c Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321

      For recent reviews on the Nicholas reaction, see:
    • 6a Kann N. Curr. Org. Chem. 2012; 16: 322
    • 6b Shea KM In Name Reactions for Homologations . Li JJ. Wiley; Hoboken: 2009. Part. 1 284-298
    • 6c Diaz DD, Betancort JM, Martín VS. Synlett 2007; 343
    • 6d Teobald BJ. Tetrahedron 2002; 58: 4133
    • 6e Green JR. Curr. Org. Chem. 2001; 5: 809
  • 8 Green JR, Tjeng AA. J. Org. Chem. 2009; 74: 7411
  • 9 Taj RA, Green JR. J. Org. Chem. 2010; 75: 8258
    • 10a Niu H.-Y, Du C, Xie M.-S, Wano Y, Zhang Q, Qu G.-R, Guo H.-M. Chem. Commun. 2015; 51: 3328 ; and references cited therein
    • 10b Garve LK. D, Werz DB. Org. Lett. 2015; 17: 596
    • 10c Wu J.-Q, Qiu Z.-P, Zhang S.-S, Liu J.-G, Lao Y.-X, Gu L.-Q, Huang Z.-S, Li J, Wang H. Chem. Commun. 2015; 51: 77
    • 10d Emmett MR, Grover HK, Kerr MA. J. Org. Chem. 2012; 77: 6634
    • 10e Dieskau AP, Holzwarth MS, Plietker B. J. Am. Chem. Soc. 2012; 134: 5048
    • 10f Sumida Y, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 4677
    • 10g Lifchits O, Charette A. Org. Lett. 2008; 10: 2809
    • 10h Sebelius S, Olsson VJ, Szabó KJ. J. Am. Chem. Soc. 2005; 127: 2046
    • 10i Burgess K. J. Org. Chem. 1987; 52: 2046
    • 10j Blanchard LA, Schneider JA. J. Org. Chem. 1986; 51: 1372
  • 11 For a bis(vinylsilane) diacylation that must proceed through an ε-carbonyl cation, see: Fiandanese V, Punzi A, Ravasio N. J. Organomet. Chem. 1993; 447: 311
    • 12a Padmanabhan S, Nicholas KM. Tetrahedron Lett. 1982; 23: 2555
    • 12b Shibuya S, Isobe M. Tetrahedron 1998; 54: 6667
    • 12c Álvaro E, de la Torre MC, Sierra MA. Org. Lett. 2003; 5: 2381
    • 12d DiMartino J, Green JR. Tetrahedron 2006; 62: 1402 ; and references cited therein
  • 13 Shahat AA, Apers S, Pieters L, Vlietinck AJ. Fitoterpia 2001; 72: 89
    • 14a Akiyama T, Takada K, Oikawa T, Matsuura N, Ise Y, Okada S, Matsunaga S. Tetrahedron 2013; 69: 6560
    • 14b Zhou Z.-F, Menna M, Cai Z.-S, Guo Y.-W. Chem. Rev. 2015; 115: 1543
  • 15 Midland MM, Tramontano A, Cable JR. J. Org. Chem. 1980; 45: 28
  • 16 For the preparation of compounds 710, see Supporting Information.
    • 17a Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 17b For the electrophilicity E values of propargyldicobalt cations, see: Kuhn O, Rau D, Mayr H. J. Am. Chem. Soc. 1998; 120: 900
  • 18 Excess BF3·OEt2 slowly afforded a mixture of products of attack ε (11a) and γ (11a′) to the carbonyl.
  • 19 General Procedure A To a solution of 7 (0.0873 g, 0.198 mmol) and MeOH (8.0 μL, 0.60 mmol) in CH2Cl2 (9 mL, 3.0 equiv) at 0 °C was added Bu2BOTf (0.20 mL of a 1.0 M solution, 0.20 mmol). After 30 min, NH4Cl (aq) was added, and the mixture subjected to a conventional extractive workup (CH2Cl2). Following flash chromatography (PE–Et2O, 25:1), 11a was isolated as a red-brown viscous liquid (0.0677 g, 75%).
  • 20 Amiralaei S, Gauld J, Green JR. Chem. Eur. J. 2011; 17: 4157
  • 21 Selected Characterization Data (for complete data, see Supporting Information) Compound 11a: IR (neat): 2984, 2099, 2060, 2023, 1704 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.77 (dt, J = 15.1, 1.6 Hz, 1 H), 6.31 (dt, J = 15.1, 5.4 Hz, 1 H), 4.32 (q, J = 7.1 Hz, 2 H), 4.04 (dd, J = 5.4, 1.6 Hz, 1 H), 3.39 (s, 3 H), 1.33 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 198.1, 169.7, 134.4, 127.1, 88.6, 78.5, 72.2, 62.0, 58.2, 14.1. MS: m/e 426 [M+ – CO], 398 [M+ – 2CO], 370 [M+ – 3CO], 342 [M+ – 4CO], 314 [M+ – 5CO], 286 [M+ – 6CO]. HRMS: m/z calcd for C15H12Co2O9 [M+ –CO]: 425.9196; found: 425.9193. Compound 13b: IR (neat): 2968, 2088, 2046, 1998 cm–1. 1H NMR (300 MHz, CDCl3): 6.60 (d, J = 14.7 Hz, 1 H), 6.01 (dt, J = 14.7, 6.7 Hz, 1 H), 5.80 (m, 1 H), 4.95–5.08 (m, 2 H), 4.18 (m, 2 H), 4.05 (m, 2 H), 2.30 (m, 2 H), 2.23 (m, 2 H), 1.09 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 198.8, 137.5, 127.3, 115.7, 115.3, 98.7, 92.3, 66.4, 42.5, 33.4, 32.2, 26.0. MS: m/e = 492 [M+ – CO], 464 [M+ – 2CO], 436 [M+ – 3CO], 408 [M+ – 4CO], 380 [M+ – 5CO], 352 [M+ – 6CO]. HRMS: m/z calcd for C21H22Co2O8 [M+ – 3CO]: 436.0131; found: 436.0121. Compound 14c: IR (neat): 2930, 2096, 2056, 2018, 1669 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.61 (app. t, J = 2.2 Hz, 1 H), 6.56 (dt, J = 15.0, 1.4 Hz, 1 H), 6.37 (dt, J = 15.0, 6.4 Hz, 1 H), 6.09 (app. t, J = 3.1 Hz, 1 H), 5.93 (m, 1 H), 3.54 (s, 3 H), 3.48 (d, J = 6.5 Hz, 2 H), 2.74 (t, J = 7.3 Hz, 2 H), 1.73 (m, 2 H), 1.27–1.40 (m, 6 H), 0.91 (t, J = 6.8 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 203,2, 198.2, 136.2, 129.4, 126.8, 122.0, 106.9, 106.8, 90.5, 87.8, 43.7, 33.6, 31.6, 30.3, 28.8, 24.6, 22.5, 14.0. MS: m/e = 487 [M+ – 2CO], 459 [M+ – 3CO], 431 [M+ – 4CO], 403 [M+ – 5CO], 375 [M+ – 6CO]. HRMS: m/z for C23H23Co2NO7 [M+ – 2CO]: 487.0240; found: 487.0258. Compound 15b: mp 71–72.5 °C. IR (neat): 2941, 2087, 2048, 2015, 1721 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.03 (d, J = 11.5 Hz, 1 H), 6.13 (s, 2 H), 5.90 (d, J = 11.5 Hz, 1 H), 4.27 (s, 2 H), 4.22 (q, J = 7.1 Hz, 2 H), 3.82 (s, 3 H), 3.78 (s, 6 H), 1.31 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ =199.5, 165.2, 160.2, 158.8, 142.3, 118.1, 108.7, 103.3, 92.7, 89.8, 82.0, 60.1, 55.2, 54.7, 27.3, 14.2. MS: m/e = 534 [M+ – 2CO], 506 [M+ – 3CO], 478 [M+ – 4CO], 450 [M+ – 5CO], 422 [M+ – 6CO]. HRMS: m/z calcd for ­C23H20Co2O11 [M+ – 4CO]: 477.9873; found: 477.9873.
  • 22 The acetate was chosen due to concerns regarding the Lewis acid causing acidic media with an alcohol function, possibly resulting in alkene isomerization.
  • 23 Sample Decomplexation To a solution of 11d (0.1042 g) in acetone at –78 °C was added CAN (0.55 g). The solution was warmed from –78 °C to –30 °C over 1 h and stirred at –30 °C for 2 h. NaCl (aq) was added, and the mixture was subjected to a conventional extractive workup (Et2O). Preparative TLC (hexanes–Et2O, 25:1) gave 16 as a 95:5 mixture of C-2/C-3 thiophene-substitution regioisomers (0.0406 g, 90%), as a colorless oil. IR (neat): 2982, 2213, 1701 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.18 (dd, J = 5.1, 1.1 Hz, 1 H), 6.96 (dd, J = 5.1, 3.5 Hz, 1 H), 6.62 (m, 1 H), 6.63 (dt, J =15.9, 6.7 Hz, 1 H), 5.66 (dt, J = 15.9, 3.3 Hz, 1 H), 4.24 (q, J = 7.1 Hz, 2 H), 3.70 (d, J = 6.7 Hz, 2 H), 1.32 (t, J = 7.1 Hz, 3 H); resonances from the C-3 isomer can be observed at 7.30 (dd, J = 4.9, 2.9 Hz, 1 H), 6.90 (dd, J = 4.9, 1.2 Hz, 1 H), 5.60 (dt, J = 15.9, 3.4 Hz, 1 H), 3.52 (d, J = 6.8 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 153.9, 148.5, 139.7, 127.1, 125.5, 124.4, 108.6, 84.5, 80.5, 61.9, 33.3, 14.0. HRMS: m/z calcd for C12H12O2S [M+ – Et]: 191.0167; found: 191.0168.