Synlett 2016; 27(08): 1232-1236
DOI: 10.1055/s-0035-1561361
letter
© Georg Thieme Verlag Stuttgart · New York

Recyclable Polystyrene-Supported Copper Catalysts for the Aerobic Oxidative Homocoupling of Terminal Alkynes

Shuo Yan
a   Institute for Molecular Science (IMS), JST-ACCEL, and JST-CREST, Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
b   SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
,
Shiguang Pan
a   Institute for Molecular Science (IMS), JST-ACCEL, and JST-CREST, Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
,
Takao Osako
a   Institute for Molecular Science (IMS), JST-ACCEL, and JST-CREST, Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
b   SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
,
Yasuhiro Uozumi*
a   Institute for Molecular Science (IMS), JST-ACCEL, and JST-CREST, Okazaki 444-8787, Japan   Email: uo@ims.ac.jp
b   SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8787, Japan
c   Riken Center for Sustainable Resource Science, 2-1 Hirowasa, Wako 351-0198, Japan
› Author Affiliations
Further Information

Publication History

Received: 11 December 2015

Accepted after revision: 20 January 2016

Publication Date:
23 February 2016 (online)


Abstract

Polystyrene-supported copper(II) N,N,N′,N′-tetraethyldiethylenetriamine [Cu(II)–TEDETA] complexes were prepared by immobilization of TEDETA onto crosslinked polystyrene resin, followed by complexation with copper salts. The polystyrene-immobilized CuSO4–TEDETA complex efficiently catalyzed the oxidative homocoupling of terminal alkynes under air to give the corresponding 1,3-diynes in up to 99% yield. The catalyst was easily recovered by simple filtration and reused eight times without significant loss of catalytic activity.

Supporting Information

 
  • References and Notes

    • 1a Anastas PT, Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; New York: 1998
    • 1b Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Science 2002; 297: 807
    • 1c Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 2a Sheldon RA, van Bekkum H. Fine Chemical through Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2001
    • 2b Barbaro P, Liguori F. Heterogenized Homogeneous Catalysts for Fine Chemical Production: Catalysis by Metal Complexes. Vol. 33. Springer; Dordrecht: 2010

    • For selected reviews, see:
    • 2c Clapham B, Reger TS, Janda KD. Tetrahedron 2001; 57: 4637
    • 2d Kirschning A, Monenschein H, Wittenberg R. Angew. Chem. Int. Ed. 2001; 40: 650
    • 2e Leadbeater NE, Marco M. Chem. Rev. 2002; 102: 3217
    • 2f McNamara CA, Dixon MJ, Bradley M. Chem. Rev. 2002; 102: 3275
    • 2g Kaneda K, Ebitani K, Mizugaki T, Mori K. Bull. Chem. Soc. Jpn. 2006; 79: 981
    • 2h Lu J, Toy PH. Chem. Rev. 2009; 109: 815
    • 2i Kann N. Molecules 2010; 15: 6306

      For selected examples, see:
    • 3a Uozumi Y, Shibatomi K. J. Am. Chem. Soc. 2001; 123: 2919
    • 3b Uozumi Y, Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
    • 3c Nakao R, Rhee H, Uozumi Y. Org. Lett. 2005; 7: 163
    • 3d Yamada YM. A, Arakawa T, Hocke H, Uozumi Y. Angew. Chem. Int. Ed. 2007; 46: 704
    • 3e Uozumi Y, Matsuura Y, Arakawa T, Yamada YM. A. Angew. Chem. Int. Ed. 2009; 48: 2708
    • 3f Yamada YM. A, Arakawa T, Hocke H, Uozumi Y. Chem. Asian J. 2009; 4: 1902
    • 3g Hirai Y, Uozumi Y. Chem. Asian J. 2010; 5: 1788
    • 3h Hirai Y, Uozumi Y. Chem. Commun. 2010; 45: 1103
    • 3i Hirai Y, Uozumi Y. Chem. Lett. 2011; 40: 934
    • 3j Hudson R, Hamasaka G, Osako T, Yamada YM. A, Li C.-J, Uozumi Y, Moores A. Green Chem. 2013; 15: 2141
    • 3k Osako T, Torii K, Uozumi Y. RSC Adv. 2015; 5: 2647
    • 3l Osako T, Torii K, Tazawa A, Uozumi Y. RSC Adv. 2015; 5: 45760
    • 4a Glaser C. Ber. Dtsch. Chem. Ges. 1869; 2: 422
    • 4b Glaser C. Ann. Chem. Pharm. 1870; 154: 137

      For selected reviews, see:
    • 5a Tour JM. Chem. Rev. 1996; 96: 537
    • 5b Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
    • 5c Shi Shun AL. K, Tykwinski RR. Angew. Chem. Int. Ed. 2006; 45: 1034
    • 5d Liu J, Lam JW. Y, Tang BZ. Chem. Rev. 2009; 109: 5799
    • 5e Stefani HA, Guarezemini AS, Cella R. Tetrahedron 2010; 66: 7871
    • 5f Alonso F, Yus M. ACS Catal. 2012; 2: 1441
    • 5g Shi W, Lei A. Tetrahedron Lett. 2014; 55: 2763
    • 5h Sindhu KS, Anilkumar G. RSC Adv. 2014; 4: 27867
    • 6a Zhu BC, Jiang XZ. Appl. Organomet. Chem. 2007; 21: 345
    • 6b Oishi T, Katayama T, Yamaguchi K, Mizuno N. Chem. Eur. J. 2009; 15: 7539
    • 6c Kuhn P, Alix A, Kumarraja M, Louis B, Pale P, Sommer J. Eur. J. Org. Chem. 2009; 423
    • 6d Alonso F, Melkonian T, Moglie Y, Yus M. Eur. J. Org. Chem. 2011; 2524
    • 6e Oishi T, Yamaguchi K, Mizuno N. ACS Catal. 2011; 1: 1351
    • 6f Xiao R, Yao R, Cai M. Eur. J. Org. Chem. 2012; 4178
    • 6g van Geldren L, Rothenberg G, Calderone VR, Wilson K, Shiju NR. Appl. Organomet. Chem. 2013; 27: 23
    • 6h Nador F, Volpe MA, Alonso F, Feldhoff A, Kirschning A, Radivoy G. Appl. Catal., A 2013; 455: 39
    • 6i Sun Q, Lv Z, Du Y, Wu Q, Wang L, Zhu L, Meng X, Chen W, Xiao F.-S. Chem. Asian J. 2013; 8: 2822
    • 6j Li H, Yang M, Zhang X, Yan L, Li J, Qi Y. New J. Chem. 2013; 37: 1343
    • 6k Narani A, Marella RK, Ramudu P, Rao KS. R, Burri DR. RSC Adv. 2014; 4: 3774
    • 6l Maaten B, Moussa J, Desmarets C, Gredin P, Beaunier P, Kanger T, Tõnsuaadu K, Villemin D, Gruselle M. J. Mol. Catal. A: Chem. 2014; 393: 112
    • 6m Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Mirkhani V, Tangestaninejad S, Vgabekov V, Rudbari HA. RSC Adv. 2014; 4: 14291
  • 7 Preparation of Polystyrene-Supported N,N,N′,N′-Tetraethyldiethylenetriamine (PS–TEDETA) A mixture of chloromethylated polystyrene (1.0 g, 2.4 mmol/Cl), PS–TEDETA (2.47 mL, 9.6 mmol), Et3N (1.33 mL, 9.6 mmol), and NaI (14.9 mg, 0.1 mmol) in MeCN (100 mL) was refluxed for 72 h. After cooling the mixture was filtered, and the resulting resin beads were washed sequentially with MeCN (3 × 10 mL), MeOH–H2O (1:1, 3 × 10 mL), MeOH (3 × 10 mL), CH2Cl2 (3 × 10 mL), Et2O (3 × 10 mL), and then dried in vacuo.
  • 8 Preparation of Polystyrene-Supported CuSO4–TEDETA Complex (A) A mixture of PS–TEDETA (200 mg) and CuSO4·5H2O (0.504 mmol) in EtOH (3 mL) was stirred at 50 °C for 6 h. After cooling the mixture was filtered, and the resulting resin beads were washed with EtOH (10 × 4 mL), dried in vacuo overnight to provide the corresponding polystyrene-supported Cu(II)–TEDETA complex (A). The loading value of copper was determined by ICP analysis: 1.16 mmol/g. Other polystyrene-supported Cu(II)–TEDETA complexes B and C were prepared following a similar procedure.
  • 9 Further screening of solvents and bases under the conditions in entry 1 are shown in Table S1 in the Supporting Information. Among them, CH2Cl2 gave the highest yield (99% GC yield), but the color of the solution is bluer than other solvents. This result clearly indicated that the leaching of copper occurred quickly in CH2Cl2.
  • 10 The yield was not improved significantly (88% GC yield) even when the reaction time was prolonged to 36 h.
  • 11 Polystyrene–polyethylene glycol (PS–PEG) resin-supported CuSO4–TEDETA complex was also prepared and applied to the oxidative homocoupling of ethynylbenzene 1a under the conditions in entry 8 (Table 1). The desired product 2a was obtained in 91% GC yield. However, ICP analysis indicated that 55.5% of copper was leached to the solution.
  • 12 Procedure for the Oxidative Homocoupling of Terminal Alkynes A mixture of catalyst (PS–TEDETA–CuSO4, 0.05 mmol of Cu), ethynylbenzene (1a, 0.5 mmol) and piperidine (0.5 mmol) in toluene (1.0 mL) was stirred at 60 °C for 24 h under air. After cooling, the mixture was filtered, and the residue was washed by CH2Cl2 (3 × 2 mL). The combined organic phases were concentrated in vacuo, and the crude products were purified by column chromatography (hexane–EtOAc = 99:1, Rf = 0.7) to give the corresponding product 2a. 1,4-Diphenylbuta-1,3-diyne (2a) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.52 (m, 4 H), 7.39–7.31 (m, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 132.5, 129.2, 128.4, 121.7, 81.5, 73.9 ppm. 1,4-Bis(p-methoxyphenyl)buta-1,3-diyne (2b) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.46 (d, J = 9.0 Hz, 4 H), 6.85 (d, J = 9.0 Hz, 4 H), 3.82 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 160.2, 134.0, 114.1, 113.9, 81.2, 72.9, 55.3 ppm. 1,4-Di[(1,1′-biphenyl)-4-yl]buta-1,3-diyne (2c) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.63–7.54 (m, 12 H), 7.48–7.44 (m, 4 H), 7.40–7.36 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 141.9, 140.1, 132.9, 128.9, 127.9, 127.1, 127.0, 120.6, 81.8, 74.6 ppm. 1,4-Bis(p-pentylphenyl)buta-1,3-diyne (2d) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.43 (d, J = 8.2 Hz, 4 H), 7.14 (d, J = 8.2 Hz, 4 H), 2.60 (t, J = 8.2 Hz, 4 H), 1.62–1.55 (m, 4 H), 1.32–1.28 (m, 8 H), 0.89 (t, J = 6.6 Hz, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 144.5, 132.4, 128.5, 118.9, 81.6, 73.5, 35.9, 31.4, 30.8, 22.5, 14.0 ppm. 1,4-Di(p-tolyl)buta-1,3-diyne (2e) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.41 (d, J = 8.6 Hz, 4 H), 7.14 (d, J = 8.6 Hz, 4 H), 2.36 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 139.5, 132.4, 129.2, 118.7, 81.5, 73.4, 21.6 ppm. 1,4-Bis[4-(trifluoromethyl)phenyl]buta-1,3-diyne (2f) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.63 (br s, 8 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 132.8, 131.1 (d, J = 32.6 Hz, 1 C), 126.9 (q, J = 3.6 Hz, 1 C), 125.2 (d, J = 2.0 Hz, 1 C), 123.7 (d, J = 274.0 Hz, 1 C), 80.9, 75.6 ppm. 1,4-Bis(p-fluorophenyl)buta-1,3-diyne (2g) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.51 (dd, J = 8.8, 5.6 Hz, 4 H), 7.05 (dd, J = 8.8, 5.6 Hz, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 163.0 (d, J = 252.9 Hz, 1 C), 134.5 (d, J = 8.6 Hz, 1 C), 117.8 (d, J = 3.9 Hz, 1 C), 115.9 (d, J = 22.1 Hz, 1 C), 80.4, 73.5 ppm. 1,4-Bis(p-carbomethoxyphenyl)buta-1,3-diyne (2h) White solid. 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.8 Hz, 4 H), 7.60 (d, J = 8.8 Hz, 4 H), 3.93 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.3, 132.5, 130.5, 129.6, 126.1, 81.8, 76.2, 52.4 ppm. 1,4-Di(m-tolyl)buta-1,3-diyne (2i) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.33–7.32 (m, 4 H),7.23–7.16 (m, 4 H), 2.33 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 138.1, 132.9, 130.1, 129.6, 128.3, 121.6, 81.6, 73.6, 21.2 ppm. 1,4-Di(o-tolyl)buta-1,3-diyne (2j) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 7.2 Hz, 2 H), 7.27–7.20 (m, 4 H), 7.17–7.13 (m, 2 H),2.49 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 141.6, 132.9, 129.5, 129.1, 125.6, 121.7, 81.1, 77.5, 20.7 ppm. 1,4-Bis[2-(trifluoromethyl)phenyl]buta-1,3-diyne (2k) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.69 (dd, J = 8.0, 7.6 Hz, 4 H), 7.50 (dd, J = 7.2, 6.4 Hz, 2 H), 7.47 (dd, J = 7.6, 7.2 Hz, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 135.1, 132.5 (q, J = 0.6 Hz, 1 C), 132.1, 129.1, 126.0 (q, J = 4.8 Hz, 1 C), 123.2 (d, J = 275 Hz, 1 C),119.7 (q, J = 1.9 Hz, 1 C), 78.7, 78.6 ppm. 1,4-Bis(2-fluorophenyl)buta-1,3-diyne (2l) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.54–7.50 (m, 2 H), 7.39–7.34 (m, 2 H), 7.15–7.08 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 163.7 (d, J = 254.9 Hz, 1 C), 134.3, 131.1 (d, J = 7.7 Hz, 1 C), 124.1 (d, J = 3.8 Hz, 1 C), 115.7 (d, J = 20.2 Hz, 1 C), 110.4 (d, J = 15.3 Hz, 1 C), 78.3, 75.8 ppm. 1,4-Di(naphthalen-1-yl)buta-1,3-diyne (2m) White solid. 1H NMR (400 MHz, CDCl3): δ = 8.43 (d, J = 8.0 Hz, 2 H), 7.88 (dd, J = 7.8, 2.6 Hz, 4 H), 7.83 (dd, J = 7.0, 1.0 Hz, 2 H), 7.65–7.61 (m, 2 H), 7.57–7.53 (m, 2 H), 7.48–7.44 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 133.9, 133.1, 132.1, 129.8, 128.5, 127.2, 126.7, 126.1, 125.2, 119.5, 80.9, 78.7 ppm. 1,4-Di(cyclohexenyl)buta-1,3-diyne (2n) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 6.26–6.24 (m, 2 H), 2.14–2.09 (m, 8 H), 1.66–1.54 (m, 8 H). 13C NMR (100 MHz, CDCl3): δ = 138.1, 119.9, 82.7, 71.5, 28.7, 25.9, 22.1, 21.3 ppm. 1,6-Diphenoxyhexa-2,4-diyne (2o) White solid. 1H NMR (400 MHz, CDCl3): δ = 7.30 (dd, J = 8.4, 7.6 Hz, 4 H), 7.00 (t, J = 7.6 Hz, 2 H), 6.94 (d, J = 8.4 Hz, 4 H), 4.74 (s, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 157.3, 129.5, 121.7, 114.8, 74.6, 71.0, 56.1 ppm. 1,8-Bis(benzoxy)octa-3,5-diyne (2p) White solid; mp 88–89 °C. 1H NMR (400 MHz, CDCl3): δ = 8.06–8.04 (m, 4 H), 7.59–7.54 (m, 2 H), 7.46–7.42 (m, 4 H), 4.41 (t, J = 6.8 Hz, 4 H), 2.74 (t, J = 6.8 Hz, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 166.2, 133.1, 129.7, 129.6, 128.4, 73.5, 66.6, 62.2, 19.8 ppm. IR (ATR, neat): 3063, 2920, 1715, 1450, 1386, 1265, 1116, 1021, 985, 704, 684, 677 cm–1. ESI-HRMS: m/z calcd for C22H19O4 [M+ + H]: 347.1283; found: 347.1284. Dibenzyldodeca-5,7-diynedioate (2q) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.29 (m, 10 H), 5.11 (s, 4 H), 2.48 (t, J = 7.2 Hz, 4 H), 2.32 (t, J = 6.8 Hz, 4 H), 1.89–1.82 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 172.7, 135.8, 128.5, 128.2, 128.1, 76.3, 66.2, 66.0, 32.9, 23.4, 18.6 ppm. IR (ATR, neat): 3033, 2942, 1731, 1455, 1212, 1148, 968, 736, 696 cm–1. ESI-HRMS: m/z calcd for C26H27O4 [M+ + H]: 403.1909; found: 403.1906. Deca-4,6-diyne-1,10-diol (2r) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 3.74 (t, J = 6.2 Hz, 4 H), 2.39 (t, J = 7.0 Hz, 4 H), 1.89 (br s, 2 H), 1.81–1.75 (m, 4 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 76.8, 65.6, 61.3, 30.9, 15.7 ppm. Hexadeca-7,9-diyne (2s) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 2.24 (t, J = 7.2 Hz, 4 H), 1.55–1.48 (m, 4 H), 1.42–1.22 (m, 12 H), 0.89 (t, J = 7.2 Hz, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 77.5, 65.2, 31.3, 28.5, 28.3, 22.5, 19.2, 14.0 ppm. Icosa-9,11-diyne (2t) Colorless oil. 1H NMR (400 MHz, CDCl3): δ = 2.24 (t, J = 7.0 Hz, 4 H), 1.56–1.48 (m, 4 H), 1.40–1.27 (m, 20 H), 0.88 (t, J = 6.8 Hz, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 77.5, 65.2, 31.8, 29.1, 29.0, 28.8, 28.3, 22.6, 19.2, 14.1 ppm.
  • 13 After 9th recycling run, ICP analysis indicated that 20% of copper content (2 mol% Cu) remained in the recovered catalyst. This suggested that 2 mol% of copper content is enough to promote the reaction. In fact, we examined the homocoupling of ethynylbenzene (1a) with PS-supported CuSO4–TEDETA (2.0 mol% Cu), giving the desired product 2a in 91% yield.