Synlett 2016; 27(05): 769-772
DOI: 10.1055/s-0035-1560989
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidative α-Ketoacylations of Sulfoximines with Aryl Methyl Ketones and Dioxygen as Terminal Oxidant

Hanchao Cheng
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: carsten.bolm@oc.rwth-aachen.de
,
Carsten Bolm*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: carsten.bolm@oc.rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 20 August 2015

Accepted after revision: 21 October 2015

Publication Date:
11 December 2015 (online)


Abstract

An efficient copper-catalyzed C−H/N−H bond functionalization for the synthesis of α-keto-N-acyl sulfoximines from aryl methyl ketones and NH-sulfoximines with molecular oxygen as terminal oxidant has been developed.

Supporting Information

 
  • References and Notes

    • 1a Njoroge FG, Chen KX, Shih N.-Y, Piwinski JJ. Acc. Chem. Res. 2008; 41: 50
    • 1b Steuer C, Gege C, Fischl W, Heinonen KH, Bartenschlager R, Klein CD. Biorg. Med. Chem. 2011; 19: 4067
    • 1c Mandadapu SR, Gunnam MR, Tiew K.-C, Uy RA. Z, Prior AM, Alliston KR, Hua DH, Kim Y, Chang K.-O, Groutas WC. Bioorg. Med. Chem. Lett. 2013; 23: 62
    • 1d Lee SH, Kyung H, Yokota R, Goto T, Oe T. Chem. Res. Toxicol. 2015; 28: 59
    • 1e Khalilieh S, Feng H.-P, Hulskotte EJ, Wenning L, Butterton J. Clin. Pharmacokinet. 2015; 54: 599
  • 2 For a recent representative example showing that peptidic α-ketoamides inhibit the malarial protease PfSUB1, see: Kher SS, Penzo M, Fulle S, Finn PW, Blackman MJ, Jirgensons A. Bioorg. Med. Chem. Lett. 2014; 24: 4486
  • 3 Singh RP, Shreeve JM. J. Org. Chem. 2003; 68: 6063
    • 4a Hua R, Takeda H.-A, Abe Y, Tanaka M. J. Org. Chem. 2004; 69: 974
    • 4b Mossetti R, Pirali T, Tron GC, Zhu J. Org. Lett. 2010; 12: 820
    • 5a Mai W.-P, Wang H.-H, Li Z.-C, Yuan J.-W, Xiao Y.-M, Yang L.-R, Mao P, Qu L.-B. Chem. Commun. 2012; 48: 10117
    • 5b Du B, Jin B, Sun P. Org. Biomol. Chem. 2014; 12: 4586
    • 6a Wei W, Shao Y, Hu H, Zhang F, Zhang C, Xu Y, Wan X. J. Org. Chem. 2012; 77: 7157
    • 6b Zhang X, Wang L. Green Chem. 2012; 14: 2141
    • 6c Deshidi R, Devari S, Shah BA. Eur. J. Org. Chem. 2015; 1428
    • 7a Mupparapu N, Vishwakarma RA, Ahmed QN. Tetrahedron 2015; 71: 3417
    • 7b Liu S, Gao Q, Wu X, Zhang J, Ding K, Wu A. Org. Biomol. Chem. 2015; 13: 2239
  • 8 Mupparapu N, Khan S, Battula S, Kushwaha M, Gupta AP, Ahmed QN, Vishwakarma RA. Org. Lett. 2014; 16: 1152
    • 9a Zhang C, Zong X, Zhang L, Jiao N. Org. Lett. 2012; 14: 3280
    • 9b Shao Y, Wu Z, Miao C, Liu L. J. Organomet. Chem. 2014; 767: 60
    • 10a Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 10b Sagadevan A, Ragupathi A, Lin C.-C, Hwu JR, Hwang KC. Green Chem. 2015; 17: 1113
    • 10c Kumar M, Devari S, Kumar A, Sultan S, Ahmed QN, Rizvi M, Shah BA. Asian J. Org. Chem. 2015; 4: 438
  • 11 Zhang C, Xu Z, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 11088
    • 12a Zhang J, Wei Y, Lin S, Liang F, Liu P. Org. Biomol. Chem. 2012; 10: 9237
    • 12b Du F.-T, Ji J.-X. Chem. Sci. 2012; 3: 460
    • 13a Li D, Wang M, Liu J, Zhao Q, Wang L. Chem. Commun. 2013; 49: 3640
    • 13b Wang H, Guo L.-N, Duan X.-H. Org. Biomol. Chem. 2013; 11: 4573
    • 13c Guin S, Rout SK, Gogoi A, Ali W, Patel BK. Adv. Synth. Catal. 2014; 356: 2559
  • 14 Sharma N, Kotha SS, Lahiri N, Sekar G. Synthesis 2015; 47: 726
  • 15 Zhang L, Pu J, Ren J, Li Z, Xiang H, Zhou X. Synth. Commun. 2015; 45: 1848

    • For representative recent reviews and selected examples illustrating the importance of aerobic oxidations, see:
    • 16a Stahl SS. Science 2005; 309: 1824
    • 16b Sigman MS, Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 16c Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 16d Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 16e Wu W, Jiang H. Acc. Chem. Res. 2012; 45: 1736
    • 16f Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 16g Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 16h McCann SD, Stahl SS. Acc. Chem. Res. 2015; 48: 1756

      For some selected examples for sulfoximines in Bolm’s group, see:
    • 17a Wang L, Huang H, Priebbenow DL, Pan F.-F, Bolm C. Angew. Chem. Int. Ed. 2013; 52: 3478
    • 17b Bizet V, Buglioni L, Bolm C. Angew. Chem. Int. Ed. 2014; 53: 5639
    • 17c Bizet V, Kowalczyk R, Bolm C. Chem. Soc. Rev. 2014; 43: 2426
    • 17d Bohnen C, Bolm C. Org. Lett. 2015; 17: 3011
    • 17e Bizet V, Hendriks CM. M, Bolm C. Chem. Soc. Rev. 2015; 44: 3378
    • 17f Cheng Y, Bolm C. Angew. Chem. Int. Ed. 2015; 54: 12349
  • 18 Wang L, Priebbenow DL, Zou L.-H, Bolm C. Adv. Synth. Catal. 2013; 355: 1490
  • 19 Towards the end of our investigation we became aware of a related study in which the authors demonstrated analogous couplings with CuI as catalyst and di-tert-butyl peroxide as oxidant under solvent-free conditions. See: Zou Y, Peng Z, Dong W, An D. Eur. J. Org. Chem. 2015; 4913
  • 20 Typical Experimental Procedure: A sealed tube (60 mL) was charged with acetophenone (1a, 300 mg, 2.5 mmol), sulfoximine 2a (77.6 mg, 0.5 mmol) and CuBr (14.3 mg, 0.1 mmol, 20 mol%), followed by the addition of DMSO (0.5 mL). The tube was flushed with dioxygen for 1 min and then sealed with a pressure cap. The reaction mixture was vigorously stirred at 80 °C for 24 h. After cooling to ambient temperature, the product was purified by column chromatography using hexane–EtOAc (10:1–2:1) as eluent to give product 3aa. Analytical data of 3aa: white solid, 86% yield; mp 98–99 °C. 1H NMR (600 MHz, CDCl3): δ = 8.02 (ddd, J = 15.7, 8.3, 1.0 Hz, 4 H), 7.66–7.71 (m, 1 H), 7.53–7.63 (m, 3 H), 7.43 (t, J = 7.8 Hz, 2 H), 3.45 (s, 3 H). 13C{1H} NMR (150 MHz, CDCl3): δ = 190.2, 173.3, 137.5, 134.5, 134.2, 132.7, 130.1, 129.9, 128.7, 127.1, 44.8. MS (EI): m/z = 183 (10), 182 (100), 140 (3), 125 (10), 105 (14), 77 (36). HRMS (ESI): m/z [M + H]+ calcd for C15H14NO3S: 288.0689; found: 288.0688.
  • 21 Applying substrates without an arylketo moiety (pinacolone, 1-cyclohexylethanone, and benzylacetone) did not lead to the expected products. Furthermore, the attempt to use propiophenone remained unsuccessful.
  • 22 A reaction between phenylglyoxal monohydrate (5) and 2a under air in acetonitrile (instead of DMSO) led to 3aa in 51% yield.
  • 23 The fact that compounds 46 could not be detected by GC–MS (after 2 h and 4 h) in the standard coupling reaction between 1a and 2a leading to 3aa as well as the observation that the yields of 3aa were comparably low when 46 were applied as starting materials (compare Scheme 4, reactions c–e) suggest the involvement of highly reactive transient species, which are difficult to substitute or mimic by pure compounds, being suspected as potential intermediates.

    • For mechanisms of Cu-catalyzed aerobic oxidations and oxygenations, see:
    • 24a Zhang C, Feng P, Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
    • 24b Huang X, Li X, Zou M, Song S, Tang C, Yuan Y, Jiao N. J. Am. Chem. Soc. 2014; 136: 14858
    • 24c Xu X, Ding W, Lin Y, Song Q. Org. Lett. 2015; 17: 516