Synlett 2016; 27(04): 599-603
DOI: 10.1055/s-0035-1560976
letter
© Georg Thieme Verlag Stuttgart · New York

Simple and Mild Synthesis of Indoles via Hydroamination Reaction Catalysed by NHC–Gold Complexes: Looking for Optimized Conditions

Malina Michalska*
a   Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Zwirki I Wigury 101, 02-089 Warsaw, Poland   Email: mmichalska@cnbc.uw.edu.pl
,
Karol Grela*
b   Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: karol.grela@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 25 September 2015

Accepted after revision: 08 November 2015

Publication Date:
30 November 2015 (online)


Abstract

An efficient heterocyclization of 2-alkynylanilines to indole derivatives has been developed. The reaction proceeds under very mild conditions using small amounts of a gold precatalyst. A range of substrates possessing various functional groups were employed, and the substituted indoles were obtained in very good yields.

Supporting Information

 
  • References and Notes

    • 1a Pearce HL In The Alkaloids . Vol. 37. Brossi A, Suffness M. Academic Press; San Diego: 1990: 145
    • 1b Anthoni U, Christophersen C, Nielsen PH In Alkaloids: Chemical and Biological Perspectives . Vol. 13. Pelletier SW. Wiley; New York: 1999: 163
    • 1c Rocha LG, Almeida JR. G. S, Macedo RO, Barbosa-Filho JM. Phytomedicine 2005; 12: 514
    • 1d Gigant B, Wang C, Ravelli RB. G, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossowl M. Nature (London, U.K.) 2005; 435: 519
    • 1e Ban Y, Murakami Y, Iwasawa Y, Tsuchiya M, Takano N. Med. Res. Rev. 1988; 8: 231
    • 2a Ackermann L. Org. Lett. 2005; 7: 439
    • 2b Shimada T, Nakamura I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546
    • 2c Janreddy D, Kavala V, Kuo CW, Kuo TS, He CH. Tetrahedron 2013; 69: 3323
    • 2d Brand JP, Chevalley C, Waser J. Beilstein J. Org. Chem. 2011; 7: 565
    • 2e Stuart DR, Bertrand-Laperle M, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 2f Ackermann L, Born R. Tetrahedron Lett. 2004; 45: 9541
    • 2g Cui S.-L, Wang J, Wang Y.-G. J. Am. Chem. Soc. 2008; 130: 13526
    • 2h Barluenga J, Jiménez-Aquino A, Aznar F, Valdés C. J. Am. Chem. Soc. 2009; 131: 4031
    • 3a Shen HC. Tetrahedron 2008; 64: 3885
    • 3b Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
    • 3c Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896 ; Angew. Chem. 2006, 118, 8064
    • 3d Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410 ; Angew. Chem. 2007, 119, 3478
    • 3e Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 3f Shiroodi RK, Koleda O, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 13146
    • 3g Zhdanko A, Maier ME. ACS Catal. 2014; 4: 2770
    • 3h Tokimizu Y, Wieteck M, Rudolph M, Oishi S, Fujii N, Hashmi AS. K, Ohno H. Org. Lett. 2015; 17: 604
    • 3i Tokimizu Y, Oishi S, Fujii N, Ohno H. Org. Lett. 2014; 16: 3138
    • 3j Hashmi AS. K, Yang W, Rominer F. Chem. Eur. J. 2012; 18: 6576
    • 3k Hashmi AS. K, Yang W, Rominger F. Adv. Synth. Catal. 2012; 354: 1273
    • 4a Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
    • 4b Arcardi A, Pietropaolo E, Alvino A, Michelet V. Beilstein J. Org. Chem. 2014; 10: 449
    • 4c Abbiati G, Marinelli F, Rossi E, Arcadi A. Isr. J. Chem. 2013; 53: 856
    • 4d Cera G, Piscitelli S, Chiarucci M, Fabrizi G, Goggiamani A, Ramon RS, Nolan SP, Bandini M. Angew. Chem. Int. Ed. 2012; 51: 9891
    • 4e Subba Reddy BV, Manisha Swain Madhusudan Reddy S, Yadav JS, Sridhar B. J. Org. Chem. 2012; 77: 11355
    • 4f Brand JP, Chevalley C, Waser J. Beilstein J. Org. Chem. 2011; 7: 565
    • 4g Chan JM. W, Amarante GW, Toste FD. Tetrahedron 2011; 67: 4306
    • 4h Chongand E, Blum SA. J. Am. Chem. Soc. 2015; 137: 10144
    • 5a Marion N, Nolan SP. Chem. Soc. Rev. 2008; 37: 1776
    • 5b Kajetanowicz A, Sytniczuk A, Grela K. Green Chem. 2014; 16: 1579
    • 5c Ablialimov O, Kędziorek M, Malinska M, Wozniak K, Grela K. Organometallics 2014; 33: 2160

      For some review in gold catalysis, see:
    • 6a Hashmi AS. K. Angew. Chem. 2010; 49: 5232
    • 6b Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410 ; Angew. Chem. 2007, 119, 3478
    • 6c Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
  • 7 For the analysis of the indolyl–gold(I) carbene, see: Hashmi AS. K, Dondeti Ramamurthi T, Rominger F. Adv. Synth. Catal. 2010; 352: 971

    • For the copper-catalyzed amination reaction, see:
    • 8a Ackermann L. Org. Lett. 2005; 7: 439
    • 8b Deng X, McAllister H, Mani NS. J. Org. Chem. 2009; 74: 5742
    • 8c Xu H, Qiao X, Yang S, Shen Z. J. Org. Chem. 2014; 79: 4414
    • 8d Matsuda N, Hirano K, Satoh T, Miura M. J. Org. Chem. 2012; 77: 617

      For the platinum-catalyzed heterocyclization reaction, see:
    • 9a Shimada T, Nakamura I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546
    • 9b Janreddy D, Kavala V, Kuo C.-W, Kuo T.-S, He C.-H, Yao C.-F. Tetrahedron 2013; 69: 3323
    • 9c Kirsch SF, Binder JT, Liébert C, Menz H. Angew. Chem. Int. Ed. 2006; 45: 5878
    • 9d Anguille S, Brunet JJ, Chau Chu N, Diallo O, Pages C, Vincendeau S. Organometallics 2006; 25: 2943

      For the PdCl2-catalyzed heterocyclization reaction, see:
    • 10a ref. 9b.
    • 10b Álvarez R, Martínez C, Madich Y, Denis JG, Aurrecoechea JM, de Lera ÁR. Chem. Eur. J. 2010; 16: 12746
    • 10c Chen Z.-L, Wan W.-Q, Chen J.-R, Zhao F, Xu D.-Y. Heterocycles 1998; 48: 1793
    • 10d Ye K.-Y, Dai LX, You S.-L. Chem. Eur. J. 2014; 20: 3040
    • 10e Zheng C, Chen JJ, Fan R. Org. Lett. 2014; 16: 816
    • 10f Aurrecoechea JM, Durana A, Pérez E. J. Org. Chem. 2008; 73: 3650

      For the AuX3-catalyzed annulation reaction, see:
    • 11a Hashmi AS. K, Frost TM, Bats JW. Org. Lett. 2001; 352: 3769
    • 11b Hashmi AS. K, Enns E, Frost TM, Schäfer S, Frey W, Rominger F. Synthesis 2008; 2707
    • 11c Nguyen RV, Yao X, Li C.-J. Org. Lett. 2006; 8: 2397
    • 11d Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2008; 46: 9891
    • 11e Majumdar KC, Chattopadhyay B, Samanta S. Synthesis 2009; 311
  • 12 For the AuCl-catalyzed heterocyclization reaction, see: Brand JP, Chevalley C, Waser J. Beilstein J. Chem. 2011; 7: 565
  • 13 Morozov OS, Lunchev AV, Bush AA, Tukov AA, Asachenko AF, Khrustalev VN, Zalesskiy SS, Ananikov VP, Nechaev MS. Chem. Eur. J. 2014; 20: 6162

    • Writers were inspired by publications:
    • 14a Uemura M, Watson ID. G, Katsukawa M, Toste FD. J. Am. Chem. Soc. 2009; 131: 3464
    • 14b Reetz MT, Sommer K. Eur. J. Org. Chem. 2003; 3485
    • 14c Michalska M, Songis O, Taillier C, Bew SP, Dalla V. Adv. Synth. Catal. 2014; 356: 2040

      For high turnover number of gold catalysis, see:
    • 15a Oliver-Meseguer J, Cabrero-Antonino JR, Domínguez I, Leyva-Pérez A, Corma A. Science 2012; 338: 1434
    • 15b Jaimes MC. B, Böhling CR. N, Serrano-Becerra JM, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 7963
    • 15c Jaimes MC. B, Rominger F, Pereira MM, Carrilho RM. B, Carabineiro SA. C, Hashmi AS. K. Chem. Commun. 2014; 50: 4937
    • 16a Gimeno A, Medio-Simón M, de Arellano CR, Asensio G, Cuenca AB. Org. Lett. 2010; 12: 1900
    • 16b Wang T, Shi S, Pflästerer D, Rettenmeier E, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2014; 20: 292
    • 16c Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
  • 17 Representative Procedure for the Gold(I)-Catalyzed Formation of Indole Derivatives To a solution of aniline derivative in hexane ([substrate] = 0.125 mol/L) in a Schlenk tube equipped with a Teflon-coated magnetic stirring bar, (IPr)AuCl followed by AgBF4 were added.17 The reaction mixture was then stirred at 40 °C in an oil bath. At the end of the reaction (1H NMR spectroscopy or TLC monitoring), the solvent was removed by vacuum evaporation. The resulting crude product was directly purified by flash column chromatography on silica gel (n-hexane–EtOAc) to afford the corresponding indole. Representative Product: 2-Butyl-1H-indole (2a) Following the general procedure 2a was obtained as a colorless oil (85% yield); Rf  = 0.56 [n-hexane–CH2Cl2 (1:1)]. 1H NMR (400 MHz, CDCl3, 20 °C): δ = 7.85 (br s, 1 H), 7.57–7.55 (m, 1 H), 7.32–7.30 (m, 1 H), 7.18–7.08 (m, 2 H), 6.27 (s, 1 H), 2.76 (t, J = 7.6 Hz, 2 H), 1.76–1.70 (m, 2 H), 1.45 (dq J = 7.6, 15.2 Hz, 2 H), 0.99 (t, J = 7.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3, 20 °C): δ = 140.0 (Cq), 135.8 (Cq), 128.8 (Cq), 120.9 (CH), 119.7 (CH), 119.6 (CH), 110.3 (CH), 99.4 (CH), 31.3 (CH2), 27.9 (CH2), 22.4 (CH2), 13.9 (CH3).
  • 18 The [(IPr)Au]BF4 (0.0025 equiv) was formed in situ by mixing (IPr)AuCl and AgBF4 (1:3 molar).