Synlett 2016; 27(03): 427-431
DOI: 10.1055/s-0035-1560830
letter
© Georg Thieme Verlag Stuttgart · New York

Iron-Catalyzed Oxidative Sulfonylation of Enol Acetates: An Environmentally Benign Approach to β-Keto Sulfones

Vinod K. Yadav
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
,
Vishnu P. Srivastava
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 26 August 2015

Accepted after revision: 05 October 2015

Publication Date:
18 November 2015 (online)


Abstract

The first application of iron-catalyzed sulfonylation of aryl enol acetates with sulfonyl hydrazides for the construction of β-keto sulfones under aerobic conditions is reported. The present protocol, which utilizes an inexpensive iron salt as the catalyst, readily available sulfonyl hydrazides as the sulfonylating reagents, and air as oxidant under mild conditions, provides a cost-effective and environmentally benign approach to various β-keto sulfones.

 
  • References and Notes

  • 1 Markitanov YM, Timoshenko VM, Shermolovich YG. J. Sulfur Chem. 2014; 35: 188
  • 2 Yang H, Carter RG, Zakharov LN. J. Am. Chem. Soc. 2008; 130: 9238
  • 3 Kumar A, Muthyala MK. Tetrahedron Lett. 2011; 52: 5368 ; and references cited therein
    • 4a Tang Y, Zgang Y, Wang K, Li X, Xu X, Du X. Org. Biomol. Chem. 2015; 13: 7084
    • 4b Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 2845
    • 4c Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 4742
    • 4d Chawla R, Singh AK, Yadav LD. S. Eur. J. Org. Chem. 2014; 2032
    • 4e Wei W, Liu C, Yang D, Wen J, You J, Suo Y, Wang H. Chem. Commun. 2013; 49: 10239
    • 4f Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei W. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 4g Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei AW. J. Am. Chem. Soc. 2013; 135: 11481
    • 4h Taniguchi T, Idota A, Ishibashi H. Org. Biomol. Chem. 2011; 9: 3151
    • 4i Taniguchi T, Zaimoku H, Ishibashi H. Chem. Eur. J. 2011; 17: 4307
    • 4j Nair RP, Kim TH, Frost BJ. Organometallics 2009; 28: 4681
    • 4k Mantrand N, Renaud P. Tetrahedron 2008; 64: 11860
    • 4l Kang S.-K, Seo H.-W, Ha Y.-H. Synthesis 2001; 1321
    • 4m Barton DH. R, Csiba MS, Jaszberenyi JC. Tetrahedron Lett. 1994; 35: 2869
    • 4n Yoshimatsu M, Hayashi M, Tanabe G, Muraoka O. Tetrahedron Lett. 1996; 37: 4161
    • 4o Craig DC, Edwards GL, Muldoon CA. Tetrahedron 1997; 53: 6171
    • 4p Fang J.-M, Chen MY. Tetrahedron Lett. 1987; 28: 2853
    • 5a Zweifel T, Nielsen M, Overgaard J, Jacobsen CB, Jørgensen KA. Eur. J. Org. Chem. 2011; 47
    • 5b Loghmani-Khouzani H, Poorheravi MP, Sadeghi MM. M, Caggiano L, Jackson RF. W. Tetrahedron 2008; 64: 7419
    • 5c Trost BM, Curran DP. Tetrahedron Lett. 1981; 22: 1287
    • 6a Nishiyama H, Furuta A. Chem. Commun. 2007; 760
    • 6b Shaikh NS, Enthaler S, Junge K, Beller M. Angew. Chem. Int. Ed. 2008; 47: 2497
    • 6c Langlotz BK, Wadepohl H, Gade LH. Angew. Chem. Int. Ed. 2008; 47: 4670
    • 6d Gaillard S, Renaud JL. ChemSusChem 2008; 1: 505
    • 6e Tondreau AM, Darmon JM, Wile BM, Floyd SK, Lobkovsky E, Chirik PJ. Organometallics 2009; 28: 3928
    • 6f Morris RH. Chem. Soc. Rev. 2009; 38: 2282
    • 6g Addis D, Shaikh N, Zhou S, Das S, Junge K, Beller M. Chem. Asian J. 2010; 5: 1687
    • 6h Inagaki T, Phong LT, Furuta A, Ito J.-i, Nishiyama H. Chem. Eur. J. 2010; 16: 3090
    • 6i Junge K, Schröder K, Beller M. Chem. Commun. 2011; 48: 4849
    • 6j Flückiger M, Togni A. Eur. J. Org. Chem. 2011; 4353
    • 7a Cotton FA, Wilkinson G. Anorganische Chemie. VCH; Weinheim: 1982. 4th ed. 767
    • 7b Zettler MW. In Encyclopedia of Reagents for Organic Synthesis . Vol. 4. Paquette L. Wiley; New York: 1995: 2871
    • 7c White AD In Encyclopedia of Reagents for Organic Synthesis . Vol. 4. Paquette L. Wiley; New York: 1995: 2873
    • 8a Ruhland K. Eur. J. Org. Chem. 2012; 2683
    • 8b Rubin M, Rubina M, Gevorgyan V. Chem. Rev. 2007; 107: 3117
    • 8c Parkins AW. Coord. Chem. Rev. 2006; 250: 449
    • 8d Wang SC, Tantillo DJ. J. Organomet. Chem. 2006; 691: 4386
    • 8e Donaldson WA. Curr. Org. Chem. 2000; 4: 837
    • 8f Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
    • 8g Fatiadi AJ. J. Res. Natl. Inst. Stand. Technol. 1991; 96: 1
    • 8h Khusnutdinov RI, Dzhemilev UM. J. Organomet. Chem. 1994; 471: 1
    • 8i Jennings PW, Johnson LL. Chem. Rev. 1994; 94: 2241
    • 8j Hirao T. Top. Curr. Chem. 1996; 178: 99
    • 8k Weissberger E, Laszlo P. Acc. Chem. Res. 1976; 9: 209
    • 8l Takaya H, Noyori J. Synth. Org. Chem. Jpn. 1977; 35: 615
    • 8m Sarel S. Acc. Chem. Res. 1978; 11: 204
    • 9a Leitner AA In Iron Catalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2008: 147
    • 9b Kischel J, Mertins K, Jovel I, Zapf A, Beller M In Iron Catalysis in Organic Chemistry . Wiley-VCH; Weinheim: 2008: 177
    • 9c Correa A, Garcia Mancheno O, Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 9d Fürstner A, Martin R. Chem. Lett. 2005; 34: 624
    • 9e Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
    • 10a Ghorai SK, Jin M, Hatakeyama T, Nakamura M. Org. Lett. 2012; 14: 1066
    • 10b Czaplik WM, Mayer M, Cvengros J, von Wangelin AJ. ChemSusChem 2009; 2: 396
    • 10c Li B.-J, Xu L, Wu Z.-H, Guan B.-T, Sun C.-L, Wang B.-Q, Shi Z.-J. J. Am. Chem. Soc. 2009; 131: 14656
    • 10d Hatakeyama T, Hashimoto S, Ishizuka K, Nakamura M. J. Am. Chem. Soc. 2009; 131: 11949
    • 10e Hatakeyama T, Nakagawa N, Nakamura M. Org. Lett. 2009; 11: 4496
    • 10f Hatakeyama T, Yoshimoto Y, Gabriel T, Nakamura M. Org. Lett. 2008; 10: 5341
    • 10g Hatakeyama T, Nakamura M. J. Am. Chem. Soc. 2007; 129: 9844
    • 10h Guerinot A, Reymond S, Cossy J. Angew. Chem. Int. Ed. 2007; 46: 6521
    • 10i Dongol KG, Koh H, Sau M, Chai CL. L. Adv. Synth. Catal. 2007; 349: 1015
    • 10j Bedford RB, Betham M, Bruce DW, Danopoulos AA, Frost RM, Hird M. J. Org. Chem. 2006; 71: 1104
    • 10k Reddy CK, Knochel P. Angew. Chem., Int. Ed. Engl. 1996; 35: 1700
    • 10l Molander GA, Rahn BJ, Shubert DC, Bonde SE. Tetrahedron Lett. 1983; 24: 5449
    • 12a Paradine SM, White MC. J. Am. Chem. Soc. 2012; 134: 2036
    • 12b Taillefer M, Xia N, Ouali A. Angew. Chem. Int. Ed. 2007; 46: 934
    • 12c Correa A, Bolm C. Angew. Chem. Int. Ed. 2007; 46: 8862
  • 13 Zeng X, Ilies L, Nakamura E. Org. Lett. 2012; 14: 954
    • 14a Tondreau AM. Atienza C. C. H, Weller KJ, Nye SA, Lewis KM, Delis JG. P, Chirik PJ. Science 2012; 335: 567
    • 14b Wu JY, Stanzl BN, Ritter T. J. Am. Chem. Soc. 2010; 132: 13214
    • 15a Stang EM, White MC. Angew. Chem. Int. Ed. 2011; 50: 2094
    • 15b Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 15c Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
    • 15d McDonald RI, Stahl SS. Angew. Chem. Int. Ed. 2010; 49: 5529
    • 15e Vermeulen NA, Delcamp JH, White MC. J. Am. Chem. Soc. 2010; 132: 11323
    • 15f Campbell AN, White PB, Guzei IA. Stahl S. S. J. Am. Chem. Soc. 2010; 132: 15116
    • 16a Kariya A, Yamaguchi T, Nobuta T, Tada N, Miura T, Itoh A. RSC Adv. 2014; 4: 13191
    • 16b Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 16c Su Y, Sun X, Wu G, Jiao N. Angew. Chem. Int. Ed. 2013; 52: 9808
    • 16d Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 16e Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 16f Wang Z.-Q, Zhang W.-W, Gong L.-B, Tang R.-Y, Yang X.-H, Liu Y, Li J.-H. Angew. Chem. Int. Ed. 2011; 50: 8968
    • 16g Wei W, Ji J.-X. Angew. Chem. Int. Ed. 2011; 50: 9097
  • 17 Miura K, Fujisawa N, Saito H, Wang D, Hosomi A. Org. Lett. 2001; 3: 2591
    • 18a Tang Y, Fan Y, Gao H, Li X, Xu X. Tetrahedron Lett. 2015; 56: 5616
    • 18b Lu Y, Li Y, Zhang R, Jin K, Duan C. J. Ful. Chem. 2014; 161: 128
    • 18c Jiang H, Cheng Y, Zhang Y, Yu S. Eur. J. Org. Chem. 2013; 5485
    • 18d Hering T, Hari DP, König B. J. Org. Chem. 2012; 77: 10347
    • 19a Yadav AK, Yadav LD. S. Green. Chem. 2015; 17: 3515
    • 19b Yadav VK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2015; 56: 2892
    • 19c Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2015; 56: 653
    • 19d Singh AK, Chawla R, Keshari T, Yadav VK, Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
    • 19e Keshari T, Yadav VK, Srivastava VP, Yadav LD. S. Green. Chem. 2014; 16: 3986
  • 20 Singh AK, Chawla R, Yadav LD. S. Synlett 2013; 24: 1558
    • 21a Tsui GC, Glenadel Q, Lau C, Lautens M. Org. Lett. 2011; 13: 208
    • 21b Kamigata N, Udodaira K, Shimizu T. J. Chem. Soc., Perkin Trans. 1 1997; 783
  • 22 General Procedure for the Synthesis of β-Keto Sulfones 3 Enol acetate 1 (1 mmol), sulfonyl hydrazide 2 (1.5 mmol), FeCl3 (10 mol%), and THF (3 mL) were added to a flask open to the air, and the mixture was stirred at 70 °C for 5–6 h (Scheme 2). After completion of the reaction (monitoring by TLC), H2O (5 mL) was added, and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phases were dried over anhydrous Na2SO4, filtered, and evaporated under reduced pressure. The resulting crude product was purified by silica gel chromatography using a mixture of hexane–EtOAc (4:1) as eluent to afford an analytically pure sample of product 3. All the compounds 3 are known and were characterized by comparison of their spectroscopic data with those reported in the literature.4d,5b,19d,21 Characterization Data of Representative Compounds 3 Compound 3a:4d,5b solid; 91% yield. 1H NMR (400 MHz, CDCl3): δ = 7.95 (d, J = 7.6 Hz, 2 H), 7.80 (t, J = 8.5 Hz, 2 H), 7.61 (t, J = 7.5 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 2 H), 7.35 (d, J = 7.8 Hz, 2 H), 4.71 (s, 2 H), 2.47 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 188.27, 145.53, 135.85, 135.84, 134.43, 129.98, 129.46, 128.96, 128.73, 63.86, 21.87. MS (EI): m/z = 274 [M+]. Anal. Calcd for C15H14O3S: C, 65.67; H, 5.14; S, 11.69. Found: C, 65.89; H, 4.93; S, 11.53. Compound 3i:19d,21b solid; 92% yield. 1H NMR (400 MHz, CDCl3): δ = 7.86 (d, J = 8.4 Hz, 2 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.30–7.26 (m, 2 H), 7.24–7.20 (m, 2 H), 4.70 (s, 2 H), 2.44 (s, 3 H), 2.44 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 187.65, 145.38, 145.15, 136.11, 133.46, 129.70, 129.39, 129.37, 128.50, 63.56, 21.59, 21.52. MS (EI): m/z = 288 [M+]. Anal. Calcd for C16H16O3S: C, 66.64; H, 5.59; S, 11.12. Found: C, 66.80; H, 5.43; S, 11.39. Compound 3j: 4d,21a solid; 86% yield. 1H NMR (400 MHz, CDCl3): δ = 7.91–7.87 (m, 4 H), 7.73 (t, J = 7.5 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 2 H), 7.46 (d, J = 8.5 Hz, 2 H), 4.73 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 186.97, 141.30, 138.67, 134.51, 134.15, 130.89, 129.41, 129.38, 128.66, 63.69. MS (EI): m/z = 294, 296 [M+, M+ + 2]. Anal. Calcd for C14H11ClO3S: C, 57.05; H, 3.76; S, 10.88. Found: C, 57.33; H, 3.89; S, 10.98.