Synlett 2016; 27(03): 379-382
DOI: 10.1055/s-0035-1560827
letter
© Georg Thieme Verlag Stuttgart · New York

A Sequentially Copper-Catalyzed Alkyne Carboxylation–Propargylation–Azide Cycloaddition (CuACPAC) Synthesis of 1,2,3-Triazolylmethyl Arylpropiolates

Ella Schreiner
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Tobias Wilcke
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
,
Thomas J. J. Müller*
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany   Email: ThomasJJ.Mueller@uni-duesseldorf.de
› Author Affiliations
Further Information

Publication History

Received: 17 August 2015

Accepted after revision: 04 October 2015

Publication Date:
09 November 2015 (online)


Dedicated to Prof. Dr. Günter Szeimies on the occasion of his 80th birthday.

Abstract

Concatenation of copper-catalyzed alkyne carboxylation–alkylation and copper-catalyzed alkyne–azide cycloaddition gives a novel sequentially copper-catalyzed alkyne carboxylation–propargylation–azide cycloaddition (CuACPAC) process furnishing 1,2,3-triazolylmethyl arylpropiolates via a consecutive four-component synthesis. The CuACPAC can be expanded to a five-component synthesis of 1,2,3-triazolylmethyl 3-amino arylacrylates by a concluding Michael addition in the same pot.

Supporting Information

 
  • References and Notes


    • For leading reviews, see:
    • 2a Bock VD, Hiemstra H, van Maarseveen JH. Eur. J. Org. Chem. 2006; 51
    • 2b Meldal M, Tornoe CW. Chem. Rev. 2008; 108: 2952
    • 2c Hänni KD, Leigh DA. Chem. Soc. Rev. 2010; 39: 1240
    • 2d Kappe CO, Van der Eycken E. Chem. Soc. Rev. 2010; 39: 1280
    • 2e Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
    • 2f Liang L, Astruc D. Coord. Chem. Rev. 2011; 255: 2933
    • 3a Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 4101
    • 3b D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
    • 3c Kirsch SF. Synthesis 2008; 3183
    • 3d Arndtsen BA. Chem. Eur. J. 2009; 15: 302
    • 3e Abbiati G, Rossi E. Beilstein J. Org. Chem. 2014; 10: 481
  • 4 For the first review on multicomponent syntheses based upon CuAAC, see: Hassan S, Müller TJ. J. Adv. Synth. Catal. 2015; 357: 617
  • 5 Müller TJ. J. Multicomponent Reactions 1. General Discussion and Reactions Involving a Carbonyl Compound as Electrophilic Component. In Science of Synthesis. Vol. 1. Müller TJ. J. Thieme; Stuttgart: 2014: 5
  • 6 Tietze LF. Chem. Rev. 1996; 96: 115

    • For seminal reviews, see:
    • 7a Ugi I, Dömling A, Werner B. J. Heterocycl. Chem. 2000; 37: 647
    • 7b Weber L, Illgen K, Almstetter M. Synlett 1999; 366

      For reviews on alkynes as reactive modules in sequential syntheses of heterocycles, see:
    • 8a Cacchi S. J. Organomet. Chem. 1999; 576: 42
    • 8b Willy B, Müller TJ. J. Curr. Org. Chem. 2009; 13: 1777
    • 8c Müller TJ. J. Top. Heterocycl. Chem. 2010; 25: 25
    • 8d Müller TJ. J. Synthesis 2012; 44: 159
    • 8e Abbiati G, Arcadi A, Marinelli F, Rossi E. Synthesis 2014; 46: 687
    • 8f Yamamoto Y. Chem. Soc. Rev. 2014; 43: 1575
  • 9 Schreiner E, Braun S, Kwasnitschka C, Frank W, Müller TJ. J. Adv. Synth. Catal. 2014; 356: 3135
  • 10 Fukue Y, Oi S, Inoue Y. J. Chem. Soc., Chem. Commun. 1994; 2091
    • 11a Yu D, Zhang Y. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20184
    • 11b Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP. Adv. Synth. Catal. 2010; 352: 2913
    • 11c Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y. Org. Biomol. Chem. 2012; 10: 1514
    • 11d Zhang W.-Z, Li W.-J, Zhang X, Zhou H, Lu X.-B. Org. Lett. 2010; 12: 4748
    • 11e Manjolinho F, Arndt M, Gooßen K, Gooßen LJ. ACS Catal. 2012; 2: 2014
    • 11f Yu B, Diao Z.-F, Guo C.-X, Zhong C.-L, He L.-N, Zhao Y.-N, Song Q.-W, Liu A.-H, Wang J.-Q. Green Chem. 2013; 15: 2401

      For reviews on tandem and sequential catalysis, see:
    • 12a Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
    • 12b Ajamian A, Gleason JL. Angew. Chem. Int. Ed. 2004; 43: 3754
    • 12c Fogg DE, de Santos EN. Coord. Chem. Rev. 2004; 248: 2365
  • 13 Tan Y.-H, Li J.-X, Xue F.-L, Qi J, Wang Z.-Y. Tetrahedron 2012; 68: 2827
  • 14 Koohshari M, Dabiri M, Salehi P, Bahramnejad M. Synth. Commun. 2012; 42: 2415
  • 15 Singh H, Nand B, Sindhu J, Khurana JM, Sharmab C, Aneja KR. J. Braz. Chem. Soc. 2014; 25: 1178
  • 16 Stefani HA, Vasconcelos SN. S, Souza FB, Manarin F, Zukerman-Schpector J. Tetrahedron Lett. 2013; 54: 5821
  • 17 Hassan S, Tschersich R, Müller TJ. J. Tetrahedron Lett. 2013; 54: 4641
  • 18 Witulski B, Zimmermann A. Synlett 2002; 1855
  • 19 Typical Procedure for the Synthesis of Compound 5a In a flame-dried Schlenk tube under nitrogen, Cs2CO3 (889 mg, 2.73 mmol), Cu(PPh3)2NO3 (63 mg, 10 μmol), and phenanthroline (18 mg, 10 μmol) were dissolved in dry DMF (4.1 mL), and the mixture was stirred for 10 min at r.t. A balloon filled with CO2 under ambient pressure was placed on the tube. Then, phenylacetylene (1a; 0.15 mL, 1.36 mmol) was added to the reaction mixture, and the suspension was stirred at 50 °C for 6 h. After the addition of propargyl bromide (2; 174 μL, 1.63 mmol of an 80% solution in toluene) the suspension was stirred at 50 °C for 45 min before benzyl azide (4a; 200 mg, 1.50 mmol) was added. The reaction mixture was stirred at 50 °C for 1 h. After workup and flash chromatography on silica gel (EtOAc–hexane, 1:3), compound 5a (278 mg, 64%) was obtained analytically pure as a yellow solid; mp 83–85 °C. 1H NMR (300 MHz, CDCl3): δ = 5.27 (s, 2 H), 5.45 (s, 2 H), 7.19–7.93 (m, 8 H), 7.46 (m, 1 H), 7.48 (m, 1 H), 7.51 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 54.4 (CH2), 59.0 (CH2), 80.3 (Cquat), 87.3 (Cquat), 119.4 (Cquat), 124.0 (CH), 128.3 (CH), 128.7 (CH), 129.0 (CH), 129.3 (CH), 130.9 (CH), 133.1 (CH), 134.3 (Cquat), 142.4 (Cquat), 153.9 (Cquat). MS (EI+): m/z (%) = 317 (2) [M]+, 129 (45) [C9H5CO+], 91 (100) [C6H5CH2 +]. Anal. Calcd for C19H15N3O2 (317.4): C, 71.91; H, 4.76; N, 13.24. Found: C, 72.11; H, 4.83, N, 13.14.
  • 20 Typical Procedure for the Synthesis of Compound 7e In a flame-dried Schlenk tube under nitrogen, Cs2CO3 (889 mg, 2.73 mmol), Cu(PPh3)2NO3 (63 mg, 10 μmol), and phenanthroline (18 mg, 10 µmol) were dissolved in dry DMF (4.1 mL), and the mixture was stirred for 10 min at r.t. A balloon filled with CO2 under ambient pressure was placed on the tube. Then, phenylacetylene (1a; 0.15 mL, 1.36 mmol) was added to the reaction mixture, and the suspension was stirred at 50 °C for 6 h. After the addition of propargyl bromide (2; 174 μL, 1.63 mmol of an 80% solution in toluene) the suspension was stirred at 50 °C for 45 min before benzyl azide (4a; 200 mg, 1.50 mmol) was added. The reaction mixture was stirred at 50 °C for 1 h. Then, methyl benzylamine (6e; 182 mg, 1.50 mmol) was added, and the suspension was stirred at 50 °C for 16 h. After workup and flash chromatography on silica gel (EtOAc–hexane, 1:1), compound 7e (311 mg, 52%) was obtained analytically pure as a yellow resin. 1H NMR (300 MHz, CDCl3): δ = 2.81 (s, 3 H), 4.17 (br, 2 H), 4.91 (s, 1 H), 5.01 (s, 2 H), 5.46 (s, 2 H), 7.20–7.40 (m, 16 H). 13C NMR (75 MHz, CDCl3): δ = 38.0 (CH3), 54.2 (CH2), 55.7 (CH2), 56.3 (CH2), 87.0 (CH), 123.2 (CH), 126.9 (CH), 127.5 (CH), 128.2 (CH), 128.4 (CH), 128.4 (CH), 128.8 (CH), 128.8 (CH), 128.8 (CH), 129.0 (CH), 134.7 (Cquat), 136.2 (Cquat), 137.3 (Cquat), 144.7 (Cquat), 164.1 (Cquat), 167.4 (Cquat). MS (ESI+): m/z = 439 [M + H]+. HRMS (ESI+): m/z calcd for [C27H26N4O2 + H]+: 439.2134; found: 439.2129.
  • 21 Sharaf SM, El-Sadany SK, Hamed EA, Youssef A.-HA. Can. J. Chem. 1991; 69: 1445