Synlett 2016; 27(03): 395-398
DOI: 10.1055/s-0035-1560527
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Palladium(II)-Catalyzed Synthesis of Fluorenones via Decarboxylative Cyclization

Zhiqiang Cai*
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
,
Xu Hou
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
,
Ling Hou
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
,
Zhiquan Hu
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
,
Bo Zhang
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
,
Zhengsheng Jin
School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, P. R. of China   Email: kahongzqc@163.com
› Author Affiliations
Further Information

Publication History

Received: 31 August 2015

Accepted after revision: 05 October 2015

Publication Date:
19 November 2015 (online)


Abstract

A one-pot palladium-catalyzed synthesis of fluoronones via decarboxylative cyclization is reported. This protocol offers good yields and tolerates a broad range of functional groups. Based on the extensive experimental data, we propose a plausible decarboxylative insertion mechanism.

Supporting Information

 
  • References and Notes

    • 1a Shultz DA, Sloop JC, Washington G. J. Org. Chem. 2006; 71: 9104
    • 1b Usta H, Facchetti A, Marks TJ. Org. Lett. 2008; 10: 1385
    • 1c Scherf U, List EJ. W. Adv. Mater. 2002; 14: 477
    • 1d Oldridge L, Kastler M, Müllen K. Chem. Commun. 2006; 885
    • 2a Talapatra SK, Bose S, Mallik AK, Talapatra B. Tetrahedron 1985; 41: 2765
    • 2b Fan C, Wang W, Wang Y, Qin G, Zhao W. Phytochemistry 2001; 57: 1255
    • 2c Wu XY, Qin GW, Fan DJ, Xu RS. Phytochemistry 1994; 36: 477
    • 2d Perry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA, Kelland LR, Neidle S. J. Med. Chem. 1999; 42: 2679
    • 2e Tierney MT, Grinstaff MW. J. Org. Chem. 2000; 65: 5355
    • 3a Barluenga J, Trincado M, Rubio E, González JM. Angew. Chem. Int. Ed. 2006; 45: 3140
    • 3b Chinnagolla RK, Jeganmohan M. Org. Lett. 2012; 14: 5246
    • 3c Shabashov D, Maldonado JR. M, Daugulis O. J. Org. Chem. 2008; 73: 7818
    • 3d Reim S, Lau M, Langer P. Tetrahedron Lett. 2006; 47: 6903
    • 4a Tilly D, Samanta SS, De A, Castanet A.-S, Mortier J. Org. Lett. 2005; 7: 827
    • 4b Tilly D, Fu J.-M, Zhao B.-P, Alessi M, Castanet A.-S, Snieckus V, Mortier J. Org. Lett. 2010; 12: 68
    • 4c Alessi M, Larkin AL, Ogilvie KA, Green LA, Lai S, Lopez S, Snieckus V. J. Org. Chem. 2007; 72: 1588
    • 4d Tilly D, Samanta SS, Castanet A.-S, De A, Mortier J. Eur. J. Org. Chem. 2006; 174
    • 4e Tilly D, Samanta SS, Faigl F, Mortier J. Tetrahedron Lett. 2002; 43: 8347
    • 5a Yang G, Zhang Q, Miao H, Tong X, Xu J. Org. Lett. 2005; 7: 263
    • 5b Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP. Org. Lett. 2005; 7: 5167
    • 6a Liu T.-P, Liao Y.-X, Xing C.-H, Hu Q.-S. Org. Lett. 2011; 13: 2452
    • 6b Bei X, Hagemeyer A, Volpe A, Saxton R, Turner H, Guram AS. J. Org. Chem. 2004; 69: 8626
    • 7a Shi Z, Glorius F. Chem. Sci. 2013; 4: 829
    • 7b Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
    • 7c Seo S, Slater M, Greaney MF. Org. Lett. 2012; 14: 2650
    • 7d Lockner JW, Dixon DD, Risgaard R, Baran PS. Org. Lett. 2011; 13: 5628
    • 8a Zhang X, Larock RC. Org. Lett. 2005; 7: 3973
    • 8b Waldo JP, Zhang X, Shi F, Larock RC. J. Org. Chem. 2008; 73: 6679
    • 8c Pletnev AA, Larock RC. J. Org. Chem. 2002; 67: 9428
    • 8d Paul S, Samanta S, Ray JK. Tetrahedron Lett. 2010; 51: 5604
  • 9 Campo MA, Larock RC. Org. Lett. 2000; 2: 3675
  • 10 Seo S, Slater M, Greaney MF. Org. Lett. 2012; 14: 2650
  • 11 Fukuyama T, Maetani S, Miyagawa K, Ryu I. Org. Lett. 2014; 16: 3216
  • 12 Wan J.-C, Huang J.-M, Jhan Y.-H, Hsieh J.-C. Org. Lett. 2013; 15: 2742
  • 13 Sun C.-L, Liu N, Li B.-J, Yu D.-G, Wang Y, Shi Z.-J. Org. Lett. 2010; 12: 184
    • 14a Hong X.-H, Wang H, Qian G, Tan Q, Xu B. J. Org. Chem. 2014; 79: 3228
    • 14b Zhu C, Xie W, Falck JR. Chem. Eur. J. 2011; 17: 12591
    • 15a Wang C, Rakshit S, Glorius F. J. Am. Chem. Soc. 2010; 132: 14006
    • 15b Zhou D.-B, Wang G.-W. Org. Lett. 2015; 17: 1260
  • 16 A mixture of 1 (0.5 mmol), DMSO (50% aq, 3 mL), Pd(OTf)2 (5 mol%), and Ag2CO3 (2 equiv) was stirred at 140 °C under air atmosphere for 24 h. The reaction mixture was washed H2O, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3ai,17 3km,17 3op 17 according to the literature). 3-Bromo-9H-fluoren-9-one (3j) Yield: 59%. 1H NMR (500 MHz, CDCl3): δ = 7.66 (d, J = 8.2 Hz, 1 H), 7.57 (d, J = 8.2 Hz, 1 H), 7.52–7.47 (m, 3 H), 7.35–7.31 (m, 1 H), 7.25 (t, J = 6.4 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 192.3, 146.1, 143.1, 140.9, 134.8, 134.3, 132.3, 129.8, 128.9, 125.3, 124.5, 120.9, 120.5. HRMS: m/z calcd for C13H7BrO: 259.0981; found: 259.0980 3-Fluoro-6-methoxy-9H-fluoren-9-one (3n) Yield: 62%. 1H NMR (500 MHz, CDCl3): δ = 7.53–7.49 (m, 1 H), 7.42 (d, J = 8.2 Hz, 1 H), 7.16 (s, 1 H), 7.02 (m, 2 H), 6.83 (m, 1 H), 3.76 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 191.7, 167.2 (d, J = 254 Hz), 147.3 (d, J = 10.2 Hz), 145.8, 143.2 (d, J = 2.4 Hz), 132.3, 130.3, 126.2 (d, J = 10.2 Hz), 124.2, 121.4, 115.3 (d, J = 22.8 Hz), 108.2 (d, J = 24.4 Hz), 56.5. HRMS: m/z calcd for C14H9FO2: 228.2185; found: 228.2189.
  • 17 Li H, Zhu R, Shi W, He K, Shi Z.-J. Org. Lett. 2012; 14: 4850