Klin Monbl Augenheilkd 2015; 232(2): 127-132
DOI: 10.1055/s-0034-1383394
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Physiologische Grundlagen der Mikrozirkulation: vaskuläre Adaptation

Physiological Basis of the Microcirculation: Vascular Adaptation
A. R. Pries
Physiologie, Charité, Berlin
› Author Affiliations
Further Information

Publication History

eingereicht 22 October 2014

akzeptiert 27 October 2014

Publication Date:
20 February 2015 (online)

Zusammenfassung

Die Mikrozirkulation ist die funktional entscheidende Endstrecke des Kreislaufs. In den Gefäßen mit Durchmessern unter ca. 300 µm finden die Durchblutungsregulation, der Stoffaustausch und wesentliche Vorgänge der Immunabwehr statt. Hierbei spielt eine Vielzahl einzelner Komponenten eine große Rolle, wie z. B. Mikrorheologie, endotheliale Oberflächenschicht, Gefäßpermeabilität, Endothelfunktion, Regulation des Gefäßmuskeltonus, Leukozyten-Endothel-Interaktion, vaskuläre Adaptation und Angiogenese. Der vorliegende Artikel ist primär auf die Rolle vaskulärer Anpassungsphänomene fokussiert. Viel stärker als größere Gefäße zeigt die Mikrozirkulation konstant Anpassungen an lokale hämodynamische und metabolische Signale. In Reaktion auf Änderungen des Bedarfs der Parenchymzellen erfolgen Änderungen des Gefäßdurchmessers existierender Gefäße (Tonusänderungen oder strukturelles „remodeling“), aber auch Neubildung oder Rückbildung von Mikrogefäßen (Angiogenese oder „pruning“). Diese Vorgänge werden unter dem Begriff „Angioadaptation“ zusammengefasst, die klinisch große Bedeutung z. B. für pathophysiologische Implikationen der Hypertonie und der altersbedingten Makuladegeneration besitzen.

Abstract

The microcirculation is the functional “business end” of the cardiovascular system. In vessels with diameters below about 300 µm processes including the regulation of perfusion, exchange processes and relevant components of the immune system are localised. A large number of individual mechanisms are involved, including micro-rheology, the endothelial surface layer, vascular permeability, endothelial function, regulation of smooth muscle tone, leukocyte endothelial interaction, vascular adaptation and angiogenesis. The present article focusses mainly on the role of vascular adaptation. Much more than in large vessels, the microcirculation is characterised by constant adaptation to haemodynamic and metabolic signals. In reaction to changes in parenchymal demand, changes of the diameter of existing vessels (by changes in tone or by structural remodelling) as well as generation of new vessels (angiogenesis) or the pruning of vessels are elicited. These mechanisms are part of the so-called “angioadaptation” which is of great clinical relevance for the pathophysiological consequences of hypertension and age-related macular degeneration.

 
  • Literatur

  • 1 Levy BI, Ambrosio G, Pries AR et al. Microcirculation in hypertension: a new target for treatment?. Circulation 2001; 104: 735-740
  • 2 Pries AR, Secomb TW. Blood Flow in microvascular Networks. In: Tuma RF, Durán WN, Ley K, eds. Handbook of Physiology: Microcirculation. 2nd ed. San Diego: Academic Press, Elsevier; 2008: 3-36
  • 3 Pries AR, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 1992; 263: H1770-H1778
  • 4 Pries AR, Secomb TW, Gessner T et al. Resistance to blood flow in microvessels in vivo. Circ Res 1994; 75: 904-915
  • 5 Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch 2000; 440: 653-666
  • 6 Pries AR, Secomb TW. Microvascular blood viscosity in vivo and the endothelial surface layer. Am J Physiol Heart Circ Physiol 2005; 289: H2657-H2664
  • 7 Goldsmith HL, Cokelet GR, Gaehtgens P. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 1989; 257: H1005-H1015
  • 8 Pries AR, Ley K, Gaehtgens P. Generalization of the Fahraeus principle for microvessel networks. Am J Physiol 1986; 251: H1324-H1332
  • 9 Barbee JH, Cokelet GR. The Fahraeus effect. Microvasc Res 1971; 3: 6-16
  • 10 Pries AR, Secomb TW. Origins of heterogeneity in tissue perfusion and metabolism. Cardiovasc Res 2009; 81: 328-335
  • 11 Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature 2005; 438: 960-966
  • 12 Rezzola S, Belleri M, Gariano G et al. In vitro and ex vivo retina angiogenesis assays. Angiogenesis 2014; 17: 429-442
  • 13 Secomb TW, Beard DA, Frisbee JC et al. The role of theoretical modeling in microcirculation research. Microcirculation 2008; 15: 693-698
  • 14 Secomb TW. Mechanics and computational simulation of blood flow in microvessels. Med Eng Phys 2011; 33: 800-804
  • 15 Pries AR, Secomb TW, Gaehtgens P. Structure and hemodynamics of microvascular networks: heterogeneity and correlations. Am J Physiol 1995; 269: H1713-H1722
  • 16 Pries AR, Reglin B, Secomb TW. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli. Hypertension 2005; 46: 726-731
  • 17 Zakrzewicz A, Secomb TW, Pries AR. Angioadaptation: keeping the vascular system in shape. News Physiol Sci 2002; 17: 197-201
  • 18 van den Akker J, Schoorl MJ, Bakker EN et al. Small artery remodeling: current concepts and questions. J Vasc Res 2010; 47: 183-202
  • 19 Mulvany MJ. Vascular remodelling of resistance vessels: can we define this?. Cardiovasc Res 1999; 41: 9-13
  • 20 Mulvany MJ. Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 2012; 110: 49-55
  • 21 Rizzoni D, Porteri E, Boari GE et al. Prognostic significance of small-artery structure in hypertension. Circulation 2003; 108: 2230-2235
  • 22 Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671-674
  • 23 Secomb TW, Alberding JP, Hsu R et al. Angiogenesis: an adaptive dynamic biological patterning problem. PLoS Comput Biol 2013; 9: e1002983
  • 24 Styp-Rekowska B, Hlushchuk R, Pries AR et al. Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf) 2011; 202: 213-223
  • 25 Cheng C, Diamond JJ, Falkner B. Functional capillary rarefaction in mild blood pressure elevation. Clin Transl Sci 2008; 1: 75-79
  • 26 Antonios TF. Microvascular rarefaction in hypertension–reversal or over-correction by treatment?. Am J Hypertens 2006; 19: 484-485
  • 27 Pries AR, Reglin B, Secomb TW. Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol 2001; 281: H1015-H1025
  • 28 Freitas F, Estato V, Carvalho VF et al. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction. Microcirculation 2013; 20: 590-598
  • 29 Goligorsky MS. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis 2010; 6: 1-10
  • 30 Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol 2006; 1-40
  • 31 Reglin B, Secomb TW, Pries AR. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?. Am J Physiol Heart Circ Physiol 2009; 297: H2206-H2219
  • 32 Pries AR, Hopfner M, Le Noble F et al. The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 2010; 10: 587-593
  • 33 de Wit C. Connexins pave the way for vascular communication. News Physiol Sci 2004; 19: 148-153
  • 34 de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 2010; 459: 897-914
  • 35 Tammela T, Zarkada G, Wallgard E et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 2008; 454: 656-660
  • 36 Helotera H, Alitalo K. The VEGF family, the inside story. Cell 2007; 130: 591-592
  • 37 Stalmans I, Ng YS, Rohan R et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 2002; 109: 327-336