Klin Monbl Augenheilkd 2015; 232(2): 133-140
DOI: 10.1055/s-0034-1383384
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Funktionelle Unterschiede in den Mikrozirkulationsgebieten des Auges

Functional Differences in the Microcirculatory Units of the Eye
R. H. Funk
Institut für Anatomie, TU Dresden
› Author Affiliations
Further Information

Publication History

eingereicht 27 October 2014

akzeptiert 03 November 2014

Publication Date:
14 January 2015 (online)

Zusammenfassung

Es werden die wichtigsten Mikrozirkulationsgebiete des Auges auch in ihrer funktionellen Relevanz dargestellt. Dabei wird besonders auf die enorme morphologische und physiologische Heterogenität der Durchblutung eingegangen, vor allem, wie sie in die funktionelle Gesamtsituation der Struktur (z. B. Sauerstoffabgabe durch die Irisgefäße, Kammerwasserproduktion in den Ziliarfortsatzgefäßen) eingebunden ist. Eingehender werden Choroidea und besonders retinale Gefäße besprochen. Bei den retinalen Gefäßen ist der Aspekt der Regelung (auch über Perizyten) im Hinblick auf die hohen Erfordernisse der inneren Retinaschichten besonders wichtig. Darüber hinaus wird auf die Reaktionen auf hypoxische Zustände und hier insbesondere auf die Vorgänge in den Fotorezeptoren und bei Neovaskularisation eingegangen. Darüber hinaus wird die Situation des Stoffwechsels der retinalen Ganglienzellen (Mitochondrien), des Sehnervenkopfes und Aspekte der Pathologie im Hinblick auf das Glaukom beleuchtet.

Abstract

This review describes the most important regions of microcirculation within the eye – their architecture as well as their function. A special emphasis is put on the functional heterogeneity of the microvessels and their role regarding the specific functions localised within the different regions of the eye (e.g. oxygen release by the iris capillaries, production of aqueous humor within the ciliary processes). The microvasculature of choroidea and retina will be described in more detail. The precise adjustment of the blood flow to the functional needs of the inner retina is a very important aspect in the retinal vessels. Here, also pericytes can influence the vessel calibre like in the brain capillaries. Very important is the vascular reaction in general to states of hypoxia, especially to the hypoxic and radical producing states within the photoreceptors. The following reaction of neovascularisation will also be examined. Finally, we describe the metabolic situation of the ganglion cells and nerve fibers leading to and within the optic cup also with regard to glaucoma.

 
  • Literatur

  • 1 Funk RH. Blood supply of the retina. Ophthalmic Res 1997; 29: 320-325
  • 2 Funk R, Rohen JW. SEM studies of the functional morphology of the ciliary process vasculature in the cynomolgus monkey: reactions after application of epinephrine. Exp Eye Res 1988; 47: 653-663
  • 3 Funk RH, Wagner W, Wild J. Microendoscopic observations of the hemodynamics in the rabbit ciliary processes. Curr Eye Res 1992; 11: 543-551
  • 4 Funk R, Rohen JW. Scanning electron microscopic study on the vasculature of the human anterior eye segment, especially with respect to the ciliary processes. Exp Eye Res 1990; 51: 651-661
  • 5 Hoper J, Funk R, Zagorski Z et al. Oxygen delivery to the anterior chamber of the eye – a novel function of the anterior iris surface. Curr Eye Res 1989; 8: 649-659
  • 6 Funk RH, Gehr J, Rohen JW. Short-term hemodynamic changes in episcleral arteriovenous anastomoses correlate with venous pressure and IOP changes in the albino rabbit. Curr Eye Res 1996; 15: 87-93
  • 7 Funk RH, Rohen JW. Scanning electron microscopic study of episcleral arteriovenous anastomoses in the owl and cynomolgus monkey. Curr Eye Res 1996; 15: 321-327
  • 8 Bill A. Blood circulation and fluid dynamics in the eye. Physiol Rev 1975; 55: 383-417
  • 9 Alm A, Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 1972; 84: 306-319
  • 10 Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 1973; 15: 15-29
  • 11 Hayreh SS. The choriocapillaris. Graefes Arch Clin Exp Ophthalmol 1974; 192: 165-179
  • 12 Lütjen-Drecoll E, Lönnerholm G, Eichhorn M. Carbonic anhydrase distribution in the human and monkey eye by light and electron microscopy. Graefes Arch Clin Exp Ophthalmol 1983; 220: 285-291
  • 13 Lütjen-Drecoll E. Choroidal innervation in primate eyes. Exp Eye Res 2006; 82: 357-361
  • 14 Stefansson E, Geirsdottir A, Sigurdsson H. Metabolic physiology in age related macular degeneration. Prog Retin Eye Res 2010; 30: 72-80
  • 15 Panfoli I, Calzia D, Bianchini P et al. Evidence for aerobic metabolism in retinal rod outer segment disks. Int J Biochem Cell Biol 2009; 12: 2555-2565
  • 16 Roehlecke C, Schumann U, Ader M et al. Stress reaction in outer segments of photoreceptors after blue light irradiation. PLoS One 2013; 9: e71570
  • 17 Nakahara T, Mori A, Kurauchi Y et al. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci 2013; 123: 79-84
  • 18 Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 19 Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 1991; 113: 147-154
  • 20 Matsushita K, Puro DG. Topographical heterogeneity of K(IR) currents in pericyte-containing microvessels of the rat retina: effect of diabetes. J Physiol 2006; 573: 483-495
  • 21 Haefliger IO, Chen Q, Anderson DR. Effect of oxygen on relaxation of retinal pericytes by sodium nitroprusside. Graefes Arch Clin Exp Ophthalmol 1997; 235: 388-392
  • 22 Schönfelder U, Hofer A, Paul M et al. In situ observation of living pericytes in rat retinal capillaries. Microvasc Res 1998; 56: 22-29
  • 23 Peppiatt CM, Howarth C, Mobbs P et al. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443: 700-704
  • 24 Wittig D, Jászai J, Corbeil D et al. Immunohistochemical localization and characterization of putative mesenchymal stem cell markers in the retinal capillary network of rodents. Cells Tissues Organs 2013; 197: 344-359
  • 25 Blumenroder S, Augustin AJ, Koch FH. The influence of intraocular pressure and systemic oxygen tension on the intravascular pO2 of the pig retina as measured with phosphorescence imaging. Surv Ophthalmol 1997; 42: 118-126
  • 26 Schwartz B. Circulatory defects of the optic disk and retina in ocular hypertension and high pressure open-angle glaucoma. Surv Ophthalmol 1994; 38: 23-34
  • 27 Selbach MJ, Wonka F, Hoper J et al. Effects of elevated intraocular pressure on haemoglobin oxygenation in the rabbit optic nerve head: a microendoscopical study. Exp Eye Res 1999; 69: 301-309
  • 28 Flammer J, Mozaffarieh M. Autoregulation, a balancing act between supply and demand. Can J Ophthalmol 2008; 43: 317-321
  • 29 Yamanishi S, Katsumura K, Kobayashi T et al. Extracellular lactate as a dynamic vasoactive signal in the rat retinal microvasculature. Am J Physiol Heart Circ Physiol 2006; 290: 925-934
  • 30 Wang L, Dong J, Cull G et al. Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest Ophthalmol Vis Sci 2003; 44: 2-9
  • 31 Schmidt KG, Bergert H, Funk RH. Neurodegenerative diseases of the retina and potential for protection and recovery. Curr Neuropharmacol 2008; 6: 164-178
  • 32 Lascaratos G, Ji D, Wood JP et al. Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures. Vision Res 2007; 47: 1191-1201
  • 33 Shaban H, Richter C. A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 2002; 383: 537-545
  • 34 Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res 2009; 28: 34-62
  • 35 Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. Prog Brain Res 2008; 173: 353-373
  • 36 Chibber R, Molinatti PA, Rosatto N et al. Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia 1997; 40: 156-164
  • 37 Glenn JV, Stitt AW. The role of advanced glycation end products in retinal ageing and disease. Biochim Biophys Acta 2009; 1790: 1109-1116
  • 38 Hata Y, Rook SL, Aiello LP. Basic fibroblast growth factor induces expression of VEGF receptor KDR through a protein kinase C and p 44/p 42 mitogen-activated protein kinase-dependent pathway. Diabetes 1999; 48: 1145-1155
  • 39 Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 1998; 44: 1013-1023
  • 40 Albon J, Purslow PP, Karwatowski WS et al. Age related compliance of the lamina cribrosa in human eyes. Br J Ophthalmol 2000; 84: 318-323
  • 41 Wolfensberger TJ, Mahieu I, Jarvis-Evans J et al. Membrane-bound carbonic anhydrase in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 1994; 35: 3401-3407