Synlett 2015; 26(13): 1823-1826
DOI: 10.1055/s-0034-1381007
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of N-Monosubstituted Ureas from Nitriles via Tiemann Rearrangement

Chien-Hong Wang
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
,
Tsung-Han Hsieh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
,
Chia-Chi Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
,
Wen-Hsiung Yeh
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
,
Chih-An Lin
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
,
Tun-Cheng Chien*
Department of Chemistry, National Taiwan Normal University, No.88, Sec.4, Ting-Zhou Road, Taipei 11677, Taiwan   eMail: tcchien@ntnu.edu.tw
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. April 2015

Accepted after revision: 26. Mai 2015

Publikationsdatum:
20. Juli 2015 (online)


Abstract

Amidoximes, obtained from the reaction of nitriles with hydroxylamine, underwent Tiemann rearrangement in the presence of benzenesulfonyl chlorides (TsCl or o-NsCl) to form the N-substituted cyanamides. Subsequently, acidic hydrolysis of the cyanamides afforded the corresponding N-monosubstituted ureas. The synthesis of N-monosubstituted ureas from nitriles was accomplished by three steps in one pot, which provides a direct access to versatile N-monosubstituted urea derivatives from a wide variety of nitriles.

Supporting Information

 
  • References and Notes

  • 2 McKay MJ, Nguyen HM. Carbohydr. Res. 2014; 385: 18
  • 5 Belfrage AK, Gising J, Svensson F, Åkerblom E, Sköld C, Sandström A. Eur. J. Org. Chem. 2015; 978
  • 6 Gong H, Yang M, Xiao Z, Doweyko AM, Cunningham M, Wang J, Habte S, Holloway D, Burke C, Shuster D, Gao L, Carman J, Somerville JE, Nadler SG, Salter-Cid L, Barrish JC, Weinstein DS. Bioorg. Med. Chem. Lett. 2014; 24: 3268
    • 7a Lin W.-H, Hsu JT. A, Hsieh S.-Y, Chen C.-T, Song J.-S, Yen S.-C, Hsu T, Lu C.-T, Chen C.-H, Chou L.-H, Yang Y.-N, Chiu C.-H, Chen C.-P, Tseng Y.-J, Yen K.-J, Yeh C.-F, Chao Y.-S, Yeh T.-K, Jiaang W.-T. Bioorg. Med. Chem. 2013; 21: 2856
    • 7b Li H.-F, Lu T, Zhu T, Jiang Y.-J, Rao S.-S, Hu L.-Y, Xin B.-T, Chen Y.-D. Eur. J. Med. Chem. 2009; 44: 1240
    • 7c Michaux C, Dogné J.-M, Rolin S, Masereel B, Wouters J, Durant F. Eur. J. Med. Chem. 2003; 38: 703
  • 8 Tuerp D, Bruchmann B. Macromol. Rapid Commun. 2015; 36: 138
  • 12 Curtis N. Aust. J. Chem. 1988; 41: 585
  • 13 Breitler S, Oldenhuis NJ, Fors BP, Buchwald SL. Org. Lett. 2011; 13: 3262
    • 15a Dalby A, Mo X, Stoa R, Wroblewski N, Zhang Z, Hagen TJ. Tetrahedron Lett. 2013; 54: 2737
    • 15b De Luca L, Porcheddu A, Giacomelli G, Murgia I. Synlett 2010; 2439
    • 15c El-Deeb IM, Bayoumi SM, El-Sherbeny MA, Abdel-Aziz AA. M. Eur. J. Med. Chem. 2010; 45: 2516
    • 15d Harriman GC, Brewer M, Bennett R, Kuhn C, Bazin M, Larosa G, Skerker P, Cochran N, Gallant D, Baxter D, Picarella D, Jaffee B, Luly JR, Briskin MJ. Bioorg. Med. Chem. Lett. 2008; 18: 2509
  • 20 Partridge MW, Turner HA. J. Pharm. Pharmacol. 1953; 5: 103
    • 21a Bakunov SA, Rukavishnikov AV, Tkachev AV. Synthesis 2000; 1148
    • 21b Bakunov SA, Rukavishnikov AV, Tkachev AV. Synthesis 1994; 935
  • 22 Ulrich H, Tucker B, Richter R. J. Org. Chem. 1978; 43: 1544
  • 24 Lin C.-C, Hsieh T.-H, Liao P.-Y, Liao Z.-Y, Chang C.-W, Shih Y.-C, Yeh W.-H, Chien T.-C. Org. Lett. 2014; 16: 892
  • 25 General Procedure for the One-Pot Synthesis of N-Monosubstituted Urea 4 from Nitrile 1 (Scheme 3) To the solution of nitrile 1 in EtOH (0.1 M) was added 50 wt% aq hydroxylamine solution (1.2 equiv). The mixture was stirred at reflux temperature for 1.5 h. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The crude amidoxime product 2 was dissolved in CH2Cl2 (0.1 M), and ArSO2Cl (TsCl or o-NsCl, 1.05 equiv) and DIPEA (1.05 equiv) were added at 0 °C. The mixture was stirred under nitrogen atmosphere at r.t. for 3 h or at reflux temperature for 1 h.24 The mixture was concentrated under reduced pressure. The crude cyanamide product 3 was dissolved in the mixture of 1 N aq HCl solution and EtOH (0.1 M, 1 N HCl–EtOH = 1:4, v/v). The mixture was stirred at reflux temperature for 3 h under nitrogen. After cooling to r.t. the reaction mixture was concentrated under reduced pressure, and the residue was purified by flash column chromatography.
  • 26 Analytical Data of Compounds 4e–k
    N-(4-Nitrophenyl)urea (4e)
    Mp 213–215 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.29 (s, 1 H, NH), 8.11 (d, 2 H, J = 9.2 Hz), 7.62 (d, 2 H, J = 9.2 Hz), 6.20 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 147.3, 140.5, 125.1 (CH), 117.0 (CH). MS (EI, 20 eV): m/z = 108 (56), 138 (100), 181 (40) [M+]. ESI-MS: m/z = 167 (100), 182 (73) [M + 1]. HRMS (EI): m/z calcd for C7H7N3O3: 181.0487; found: 181.0486. N-(4-Trifluoromethylphenyl)urea (4f) Mp 144–145 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.95 (s, 1 H, NH), 7.60 (d, 2 H, J = 8.7 Hz), 7.54 (d, 2 H, J = 8.7 Hz), 6.04 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.7, 144.3, 125.9 (q, J = 3.0 Hz, CH), 124.6 (q, J = 270.0 Hz, CF3), 121.1 (q, J = 32.0 Hz), 117.4 (CH). MS (EI, 20 eV): m/z = 161 (100), 204 (41) [M+]. ESI-MS: m/z = 205 (100) [M + 1]. HRMS (EI): m/z calcd for C8H7F3N2O: 204.0510; found: 204.0508. N-(3-Methoxyphenyl)urea (4g) Mp 128–130 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.51 (s, 1 H, NH), 7.08–7.12 (m, 2 H), 6.87 (d, 1 H, J = 7.9 Hz), 6.47 (d, 1 H, J = 8.0 Hz), 5.81 (s, 2 H, NH2), 3.69 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 159.7, 156.0, 141.8, 129.4 (CH), 110.2 (CH), 106.5 (CH), 103.6 (CH), 54.9 (CH). ESI-MS: m/z = 167 [M + 1]. HRMS (EI): m/z calcd for C8H10N2O2: 166.0742; found: 166.0741. N-(2-Methylphenyl)urea (4h) Mp 194–196 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.77 (d, 1 H, J = 8.0 Hz), 7.66 (s, 1 H, NH), 7.12–7.06 (m, 2 H), 6.87 (t, 1 H, J = 7.3), 6.00 (s, 2 H, NH2), 2.18 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 156.1, 138.2, 130.0 (CH), 127.0 (CH), 126.0, 123.0 (CH), 120.9 (CH), 17.9 (CH3). MS (EI, 20 eV): m/z = 107 (100), 150 (62) [M+]. HRMS (EI): m/z calcd for C8H10N2O: 150.0793; found: 150.0792. N-(2-Chlorophenyl)urea (4i) Mp 190–192 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.12 (dd, 1 H, J = 8.4, 1.3 Hz), 8.03 (s, 1 H, NH), 7.38 (dd, 1 H, J = 8.3, 0.9 Hz), 7.24–7.20 (m, 1 H), 6.96–6.92 (m, 1 H), 6.37 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.6, 136.7, 129.0, 127.4, 122.5, 121.4, 121.1. MS (EI, 20 eV): m/z = 127 (100), 129 (30), 135 (40), 170 (18) [M+], 172 (8) [M + 2]. HRMS (EI): m/z calcd for C7H7ClN2O: 170.0247; found: 170.0246. 1,3-Dimethyl-5-ureidouracil (4j) Mp 254–258 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.09 (s, 1 H, NH), 7.84 (s, 1 H), 6.26 (s, 2 H, NH2), 3.29 (s, 3 H, CH3), 3.20 (s, 3 H, CH3). 13C NMR (100 MHz, DMSO-d 6): δ = 160.2, 156.5, 149.8, 128.5, 115.0, 70.2, 37.1, 28.4. MS (EI, 20 eV): m/z = 70 (42), 155 (100), 198 (10) [M+]. HRMS (EI): m/z calcd for C7H10N4O3: 198.0753; found: 198.0760. 2-Chloro-3-ureidopyridine (4k) Mp 210–212 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.50 (dd, 1 H, J = 8.2, 1.5 Hz), 8.19 (s, 1 H, NH), 7.96 (dd, 1 H, J = 4.5, 1.5 Hz), 7.32 (dd, 1 H, J = 8.2, 4.6 Hz), 6.52 (s, 2 H, NH2). 13C NMR (100 MHz, DMSO-d 6): δ = 155.4, 141.5 (CH), 138.5, 133.9, 128.3 (CH), 123.3 (CH). ESI-MS: m/z = 155 (28), 172 (100) [M + 1]. HRMS (EI): m/z calcd for C6H6ClN3O: 171.0199; found: 171.0201.