Synlett 2015; 26(12): 1697-1701
DOI: 10.1055/s-0034-1380724
letter
© Georg Thieme Verlag Stuttgart · New York

Mild and Efficient Cobalt-Catalyzed Cross-Coupling of Aliphatic Amides and Aryl Iodides in Water

Bryan Yong-Hao Tan
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore   Email: yongchua.teo@nie.edu.sg
,
Yong-Chua Teo*
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore   Email: yongchua.teo@nie.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 02 April 2015

Accepted after revision: 14 April 2015

Publication Date:
01 June 2015 (online)


Abstract

A convenient protocol for the C–N cross-coupling of aliphatic amides and iodobenzene is demonstrated using a simple and inexpensive Co(C2O4)·2H2O/N,N′-dimethylethylenediamine (DMEDA) catalytic system in water. Good yields of N-arylated products were isolated (up to 85%) and the protocol has been successfully applied to the synthesis of the anticancer drug, flutamide.

Supporting Information

 
  • References and Notes

  • 1 Gradman AH, Winkle RA, Fitzgerald J, Meffin PJ, Stoner J, Bell PA, Harrison DC. Circulation 1977; 55: 785
    • 2a Scher HI, Kelly WK. J. Clin. Oncol. 1993; 11: 1566
    • 2b McLeod DG, Iversen P, See WA, Morris T, Armstrong J, Wirth MP. BJU international 2006; 97: 247
    • 2c Cabot RC, Harris NL, Rosenberg ES, Shepard J.-AO, Cort AM, Ebeling SH, McDonald EK, Scher HI, Fizazi K, Saad F. N. Engl. J. Med. 2012; 367: 1187
    • 3a Frost F, Jessen B, Siggaard-Andersen J. The Lancet 1980; 315: 499
    • 3b Radwan IA, Saito S, Goto F. Anesth. Analg. 2002; 94: 319
  • 4 Snodin D. J. Org. Process Res. Dev. 2010; 14: 960
  • 5 Erickson J, Dechary J, Kesling M. J. Am. Chem. Soc. 1951; 73: 5301
    • 6a Falk FC, Frohlich R, Paradies J. Chem. Commun. 2011; 47: 11095
    • 6b Ikawa T, Barder TE, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
    • 6c Yin J, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 6043
  • 7 Ma F, Xie X, Zhang L, Peng Z, Ding L, Fu L, Zhang Z. J. Org. Chem. 2012; 77: 5279
    • 8a Jammi S, Sakthivel S, Rout L, Mukherjee T, Mandal S, Mitra R, Saha P, Punniyamurthy T. J. Org. Chem. 2009; 74: 1971
    • 8b Xu H, Wolf C. Chem. Commun. 2009; 1715
    • 9a Quan Z.-J, Xia H.-D, Zhang Z, Da Y.-X, Wang X.-C. Appl. Organomet. Chem. 2014; 28: 81
    • 9b Yong F.-F, Teo Y.-C, Chua G.-L, Lim GS, Lin Y. Tetrahedron Lett. 2011; 52: 1169
    • 9c Xiang S.-K, Zhang D.-X, Hu H, Shi J.-L, Liao L.-G, Feng C, Wang B.-Q, Zhao K.-Q, Hu P, Yang H, Yu W.-H. Adv. Synth. Catal. 2013; 355: 1495
    • 9d Lv X, Bao W. J. Org. Chem. 2007; 72: 3863
    • 9e Chen H.-H. Org. Lett. 2006; 8: 5609
    • 9f Klapars A, Huang X, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 7421
    • 9g Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
  • 10 Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
  • 11 Jiang L. Molecules (Basel, Switzerland) 2014; 19: 13448
  • 12 Correa A, Elmore S, Bolm C. Chem. Eur. J. 2008; 14: 3527
    • 13a Teo Y.-C, Chua G.-L. Chem. Eur. J. 2009; 15: 3072
    • 13b Saha P, Ali MA, Ghosh P, Punniyamurthy T. Org. Biomol. Chem. 2010; 8: 5692
    • 13c Toma G, Yamaguchi R. Eur J. Org. Chem. 2010; 2010: 6404
    • 14a Amouri H, Bégué J.-P, Chennoufi A, Bonnet-Delpon D, Gruselle M, Malézieux B. Org. Lett. 2000; 2: 807
    • 14b Braunstein P, Matt D, Nobel D. Chem. Rev. 1988; 88: 747
    • 14c Nicholas KM. Acc. Chem. Res. 1987; 20: 207
  • 15 Tan BY.-H, Teo Y.-C. Org. Biomol. Chem. 2014; 12: 7478
  • 16 Li C.-J, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
  • 17 Larsson P.-F, Correa A, Carril M, Norrby P.-O, Bolm C. Angew. Chem. Int. Ed. 2009; 48: 5691
  • 18 Allen CL, Williams JM. Chem. Soc. Rev. 2011; 40: 3405
    • 19a Baker JW, Bachman GL, Schumacher I, Roman DP, Tharp AL. J. Med. Chem. 1967; 10: 93
    • 19b Neri RO, Topliss JG. US Patent US4144270, 1979
    • 19c Stabile RG, Dicks AP. J. Chem. Ed. 2003; 80: 1439
  • 20 Bandgar B, Sawant S. Synth. Commun. 2006; 36: 859
  • 21 Ghaffarzadeh M, Rahbar S. J. Chem. Res. 2014; 38: 200
    • 22a Dukes M, Furr BJ, Hughes LR, Tucker H, Woodburn JR. Steroids 2000; 65: 725
    • 22b Labrie F. Cancer 1993; 72: 3816
  • 23 General Procedure for N-Arylation of Pyrrolidinone/Aliphatic Amides: A mixture of cobalt(II) oxalate dihydrate (Sigma-Aldrich, 0.294 mmol), Cs2CO3 (2.94 mmol), pyrrolidinone or aliphatic amide (1.47 mmol), DMEDA (0.588 mmol), distilled H2O (0.3 mL) and aryl halide (2.205 mmol) were added to an 8.0-mL reaction vial fitted with a Teflon-sealed screw cap. The reaction mixture was stirred under air in a closed system at 120 °C and 130 °C, respectively for 24 h. The heterogeneous mixture was subsequently cooled to r.t. and diluted with CH2Cl2. The combined organic extracts were dried over anhyd Na2SO4, filtered and the solvent was removed under reduced pressure. The crude product was loaded into the column using minimal amounts of CH2Cl2 and was purified by silica gel column chromatography to afford the N-arylated product. The identity and purity of products were confirmed by 1H NMR and 13C NMR spectroscopic analysis. 1-Phenylpyrrolidin-2-one (2a): off-white solid; 176 mg (75% yield). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 7.7 Hz, 2 H), 7.38 (t, J = 8.0 Hz, 2 H), 7.15 (t, J = 8.0 Hz, 1 H), 3.88 (t, J = 7.0 Hz, 2 H), 2.62 (t, J = 8.0 Hz, 2 H), 2.17 (quin, J = 8.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 182.0, 136.5, 128.9, 124.5, 120.0, 48.8, 32.8, 18.1. HRMS: m/z [M+] calcd for C10H11NO: 162.0917; found: 162.0914. 1-(2-Fluorophenyl)pyrrolidin-2-one (2b): off-white solid; 192 mg (73% yield). 1H NMR (400 MHz, CDCl3): δ = 7.38–7.43 (m, 1 H), 7.21–7.28 (m, 1 H), 7.10–7.18 (m, 2 H), 3.83 (t, J = 6.8 Hz, 2 H), 2.57 (t, J = 8.4 Hz, 2 H), 2.21 (qn, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 174.7, 157.0 (d, J = 248.4 Hz), 128.2 (d, J = 7.6 Hz), 127.8 (d, J = 2.3 Hz), 126.3 (d, J = 11.4 Hz), 124.4 (d, J = 3.8 Hz), 116.5 (d, J = 19.8 Hz), 49.9, 31.0, 18.9. HRMS: m/z [M+] calcd for C10H10NOF: 180.0822.; found: 180.0806. 1-(3-Methoxyphenyl)pyrrolidin-2-one (2i): pale yellow solid; 169 mg (60% yield). 1H NMR (400 MHz, CDCl3): δ = 7.33 (t, J = 2.8 Hz, 1 H), 7.24 (t, J = 8.0 Hz, 1 H), 7.10 (dd, J = 8.0 Hz, 1 H), 6.70 (dd, J = 8.0 Hz, 1 H), 3.82 (t, J = 8.0 Hz, 2 H), 3.80 (s, 3 H), 2.58 (t, J = 8.0 Hz, 2 H), 2.12 (qn, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 174.2, 159.9, 140.6, 129.4, 111.9, 110.0, 105.9, 55.2, 48.8, 32.8, 17.9. HRMS: m/z [M+] calcd for C11H13NO2: 192.1022; found: 192.1011. N-[3-(Trifluoromethyl)phenyl]pentanamide (4b): off-white solid; 216 mg (60% yield). 1H NMR (400 MHz, CDCl3): δ = 7.81 (s, 1 H), 7.72 (d, J = 9.2 Hz, 1 H), 7.66 (br s, 1 H), 7.40 (t, J = 8.8 Hz, 1 H), 7.34 (d, J = 8.8 Hz, 1 H), 2.38 (t, J = 8.0 Hz, 2 H), 1.70 (qn, J = 8.0 Hz, 2 H), 1.34–1.44 (m, 2 H), 0.93 (t, J = 7.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.0, 138.5, 131.3 (q, J = 32.8 Hz), 129.5, 123.9 (q, J = 270.6 Hz), 122.9, 120.7 (q, J = 3.4 Hz), 116.6 (q, J = 3.5 Hz), 47.4, 37.6, 22.3, 13.8. HRMS: m/z [M+] calcd for C12H14NOF3: 246.1103; found: 246.1117.