Synthesis 2015; 47(12): 1741-1748
DOI: 10.1055/s-0034-1380134
paper
© Georg Thieme Verlag Stuttgart · New York

Sodium Sulfide: A Sustainable Solution for Unbalanced Redox Condensation Reaction between o-Nitroanilines and Alcohols Catalyzed by an Iron–Sulfur System

Thanh Binh Nguyen*
Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, CNRS, 91198, Gif-sur-Yvette Cedex, France   Email: nguyen@icsn.cnrs-gif.fr   Email: ali.almourabit@cnrs.fr
,
Ludmila Ermolenko
Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, CNRS, 91198, Gif-sur-Yvette Cedex, France   Email: nguyen@icsn.cnrs-gif.fr   Email: ali.almourabit@cnrs.fr
,
Ali Al-Mourabit*
Centre de Recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, CNRS, 91198, Gif-sur-Yvette Cedex, France   Email: nguyen@icsn.cnrs-gif.fr   Email: ali.almourabit@cnrs.fr
› Author Affiliations
Further Information

Publication History

Received: 11 December 2014

Accepted: 07 January 2015

Publication Date:
10 February 2015 (online)


Abstract

Unbalanced redox condensation reaction between o-nitroanilines and alcohols, leading to benzimidazole and quinoxaline heterocycles can be efficiently promoted and catalyzed by sodium sulfide (40 mol%) in combination with iron(III) chloride hexahydrate (1 mol%). Beside the role as a precursor for the iron–sulfur (Fe/S) catalyst formation, hydrated sodium sulfide was shown to be an excellent noncompetitive, multi-electron reducing agent.

Supporting Information

 
  • References

  • 1 Nguyen TB, Retailleau P, Al-Mourabit A. Org. Lett. 2013; 15: 5238
    • 2a Nguyen TB, Ermolenko L, Al-Mourabit A. J. Am. Chem. Soc. 2013; 135: 118
    • 2b For a related example with phenylacetic acids as reducing coupling partners, see: Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Chem. Front. 2014; 1: 1157
    • 3a Copper-alumina catalyst at 300–310 °C: Kozlov NS, Kiselev BI. Chem. Heterocycl. Compd. 1966; 2: 248
    • 3b Dppf catalyst (2 mol%): Wu M, Hu X, Liu J, Liao Y, Deng G. Org. Lett. 2012; 14: 2722
    • 3c Gold nanoparticles supported on titanium dioxide catalyst: Tang L, Guo X, Yang Y, Zha Z, Wang Z. Chem. Commun. 2014; 50: 6145
  • 4 Dppf catalyst (3 mol%): Wang H, Cao X, Xiao F, Liu S, Deng G. Org. Lett. 2013; 15: 4900
    • 5a TiO2-P25 nanoparticles catalyst under UV irradiation: Annadhasan M, Selvam K, Swaminathan M. Synth. Commun. 2012; 42: 1500
    • 5b Dppf catalyst (5 mol%): Li G, Wang J, Yuan B, Zhang D, Lin Z, Li P, Huang H. Tetrahedron Lett. 2013; 54: 6934
    • 5c Hydrotalcite-supported Pd catalysts: Chen J, Huang S, Lin J, Su W. Appl. Catal., A 2014; 470: 1
  • 6 At least 2.5–3 equiv of benzyl alcohols have been used in reported work.3b,4 In other cases, alcohols were used in large excess (>20 equiv).5c
    • 7a Wächtershäuser G. Prog. Biophys. Mol. Biol. 1992; 58: 85
    • 7b Martin WF, Sousa FL, Lane N. Science (Washington, D. C.) 2014; 344: 1092
  • 8 Nguyen TB, Le Bescont J, Ermolenko L, Al-Mourabit A. Org. Lett. 2013; 15: 6218
  • 9 At the time of preparing this manuscript, sodium sulfide hydrate (≥60% Na2S) used for this work is commercially available from Sigma-Aldrich for $22.4/kg or $2.91/mol (13468-6X1KG-R).
  • 10 With 1.2 equiv of 2a, lowering the amount of either Na2S·nH2O or FeCl3·6H2O resulted in lower conversions (results not shown).
  • 11 Koh T, Miura Y, Ishimori M, Yamamuro N. Anal. Sci. 1989; 5: 79
  • 12 Holleman and Wiberg, Inorganic Chemistry . Wiberg N. Academic Press; San Diego: 2001: 551-557
  • 13 Kim Y, Kumar MR, Park N, Heo Y, Lee S. J. Org. Chem. 2011; 76: 9577
  • 14 Jerchel D, Fischer H, Kracht M. Justus Liebigs Ann. Chem. 1952; 575: 162
  • 15 Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 16 Blacker AJ, Farah MM, Hall MI, Marsden SP, Saidi O, Williams JM. J. Org. Lett. 2009; 11: 2039
  • 17 Sandera G, Isensee RW, Joseph L. J. Am. Chem. Soc. 1954; 76: 5173
  • 18 Rope M, Isensee RW, Joseph L. J. Am. Chem. Soc. 1952; 74: 1095
  • 19 Matsushita H, Lee S, Joung M, Clapham B, Janda KD. Tetrahedron Lett. 2004; 45: 313
  • 20 Barbero M, Cadamuro S, Dughera S. ARKIVOC 2012; (ix): 262
  • 21 Geden JV, Pancholi AK, Shipman M. J. Org. Chem. 2013; 78: 4158
  • 22 Xue D, Long Y. J. Org. Chem. 2014; 79: 4727
  • 23 Diao X, Wang Y, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 7974
  • 24 Cohen VI. J. Heterocycl. Chem. 1979; 16: 13
  • 25 Huang J, He Y, Wang Y, Zhu Q. Chem. Eur. J. 2012; 18: 13964
  • 26 Zheng N, Buchwald SL. Org. Lett. 2007; 9: 4749
  • 27 Robertson DW, Beedle EE, Krushinski JH, Pollock JD, Wilson H, Wyss VL, Hayes JS. J. Med. Chem. 1985; 28: 717
  • 28 Qin J, Chen F, Ding Z, He Y, Xu L, Fan Q. Org. Lett. 2011; 13: 6568
  • 29 Lassagne F, Chevallier F, Mongin F. Synth. Commun. 2014; 44: 141