Synlett 2015; 26(06): 820-826
DOI: 10.1055/s-0034-1380119
letter
© Georg Thieme Verlag Stuttgart · New York

Water-Mediated Three-Component Wittig–SNAr Reactions

Zian Xu
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
,
Wanwan Zhai
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
,
Congpeng Feng
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
,
Hongwei Liu*
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
,
Jianhong Zhao*
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
,
Xinhong Yu*
Shanghai Key Laboratory of New Drug Design and School of Pharmacy, East China University of Science & Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China   Email: hwliu@ecust.edu.cn   Email: xhyu@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 31 October 2014

Accepted after revision: 27 December 2014

Publication Date:
10 February 2015 (online)


Abstract

A novel one-pot, three-component Wittig–SNAr approach to ethyl (E)-3-[4-(morpholino-1-yl)-3-nitrophenyl]acrylate, ethyl (E)-3-[3-cyano-4-(morpholino-1-yl)phenyl]acrylates, ethyl (E)-3-[2-(morpholino-1-yl)-5-nitrophenyl]acrylate, ethyl (E)-3-[5-(morpholino-1-yl)-4-nirtofuryl-2-yl]acrylates, and their analogues, which would be used as intermediates of aurora 2 kinase inhibitors ,etc. has been developed starting from readily available nitro- or cyano-group-activated haloaromatic aldehydes, secondary amines, quaternary phosphonium salts, and sodium hydroxide, using water as a solvent, with high stereoselectivity and in moderate to high yield. The noteworthy features of this one-pot, three-component process is highlighted by its rapid and highly efficient formation of a new C(sp2)–N bond and a new C(sp2)–C(sp2) double bond using water as a simple nontoxic convenient and environmentally benign solvent under metal-free mild reaction conditions.

Supporting Information

 
  • References and Notes


    • For excellent recent reviews of MCR, see:
    • 1a Brauch S, van Berkel SS, Westermann B. Chem. Soc. Rev. 2013; 42: 4948
    • 1b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 1c de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 1d Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 1e Estevez V, Villacampa M, Menendez JC. Chem. Soc. Rev. 2010; 39: 4402
    • 1f Ganem B. Acc. Chem. Res. 2009; 42: 463
    • 1g Kumaravel K, Vasuki G. Curr. Org. Chem. 2009; 13: 1820

      For selected recent examples of MCR, see:
    • 2a Deng XX, Du FS, Li ZC. ACS Macro Lett. 2014; 3: 667
    • 2b Liu FL, Chen JR, Zou YQ, Wei Q, Xiao WJ. Org. Lett. 2014; 16: 3768
    • 2c Handy EL, Totaro KA, Lin CP, Sello JK. Org. Lett. 2014; 16: 3488
    • 2d Xu ZA, Ge JY, Wang TC, Luo T, Liu HW, Yu XH. Synlett 2014; 25: 2913
    • 2e Chen MZ, Micalizio GC. J. Am. Chem. Soc. 2012; 134: 1352
    • 2f Le Quement ST, Flagstad T, Mikkelsen RJ. T, Hansen MR, Givskov MC, Nielsen TE. Org. Lett. 2012; 14: 640
    • 2g Jiang B, Yi MS, Shi F, Tu SJ, Pindi S, McDowell P, Li G. Chem. Commun. 2012; 48: 808
    • 2h Kumar A, Gupta MK, Kumar M. Green Chem. 2012; 14: 290
    • 2i Suresh R, Muthusubramanian S, Senthilkumaran R, Manickam G. J. Org. Chem. 2012; 77: 1468
    • 2j Monfardini I, Huang J, Beck B, Cellitti JF, Pellecchia M, Dömling A. J. Med. Chem. 2011; 54: 890
    • 2k Burchak ON, Mugherli L, Ostuni M, Lacapere JJ, Balakirev MY. J. Am. Chem. Soc. 2011; 133: 10058
    • 2l Maeda S, Komagawa S, Uchiyama M, Morokuma K. Angew. Chem. Int. Ed. 2011; 50: 644
    • 2m Dömling A. J. Med. Chem. 2011; 54: 890
    • 2n Xu H, Yu X.-H, Sun L.-Y, Liu J, Fan W, Shen Y.-J, Wang W. Tetrahedron Lett. 2008; 49: 4687

      For MCR in water, see:
    • 3a Dandia A, Laxkar AK, Singh R. Tetrahedron Lett. 2012; 53: 3012
    • 3b Jiang B, Ma N, Wang X.-H, Tu S.-J, Li G. Heterocycles 2012; 84: 765
    • 3c Khoobi M, Ma’mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A. J. Mol. Catal. A: Chem. 2012; 359: 74
    • 3d Powner MW, Zheng SL, Szostak JW. J. Am. Chem. Soc. 2012; 134: 13889

      For reactions in water, see:
    • 4a Ribe S, Wipf P. Chem. Commun. 2001; 4: 299
    • 4b Leadbeater NE. Chem. Commun. 2005; 23: 2881
    • 4c Bhattacharyya K. Chem. Commun. 2008; 25: 2848
    • 4d Lastra-Barreira B, Diez J, Crochet P. Green Chem. 2009; 11: 1681
    • 4e Das J, Ghosh S. Tetrahedron Lett. 2011; 52: 7189
    • 4f El-Hamouly WS, Tawfik HA, Abbas EM. H. Green Chem. Lett. Rev. 2009; 2: 213
    • 4g Madje BR, Shelke KF, Sapkal SB, Kakade GK, Shingare MS. Green Chem. Lett. Rev. 2010; 3: 269
    • 4h Prim D, Kirsch G, Nicoud JF. Synlett 1998; 383
    • 4i El-Batta A, Jiang CC, Zhao W, Anness R, Cooksy AL, Bergdahl M. J. Org. Chem. 2007; 72: 5244
  • 5 Mortlock AA, Keen NJ. WO 0121595, 2001
    • 6a Cao J, Feng JX, Wu YX, Tuo YY. P. Chin. Chem. Lett. 2010; 21: 935
    • 6b Medimagh R, Marque S, Prim D, Chatti S, Zarrouk H. J. Org. Chem. 2008; 73: 2191
    • 6c Sutharsan J, Lichlyter D, Wright NE, Dakanali M, Haidekker MA, Theodorakis EA. Tetrahedron 2010; 66: 2582
  • 7 Riccaboni M, La Porta E, Martorana A, Attanasio R. Tetrahedron 2010; 66: 4032
    • 8a Mahesh M, Murphy JA, Wessel HP. J. Org. Chem. 2005; 70: 4118
    • 8b Anderson RJ. Organic Spectroscopic Analysis . Royal Society of Chemistry; Cambridge: 2004
  • 9 Typical Procedure for the Preparation of Compound 1 – Wittig–SNAr Reaction To a 25 mL three-necked round-bottomed flask was added 4-fluoro-3-nitrobenzaldehyde (2b, 0.1691 g, 1.0 mmol), NaOH (0.0600 g, 1.5 mmol), (2-ethoxy-2-oxoethyl)triphenylphosphonium bromide (4a, 0.6440 g, 1.5 mmol), piperidine (3b, 0.2968 mL, 3.0 mmol), and H2O (5 mL), then heated to 50 °C. The reaction progress was carefully monitored by TLC. After 10 min, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography. Ethyl (E)-3-(4-Morpholino-1-yl-3-nitrophenyl)acrylate (1a) Orange solid. HRMS: m/z calcd for C15H18N2O5 [M + H]: 307.1294; found: 307.1293. 1H NMR (400 MHz, CDCl3): δ = 7.94 (d, J = 2.01 Hz, 1 H), 7.60–7.56 (m, 2 H), 7.09 (d, J = 8.61 Hz, 1 H), 6.36 (d, J = 15.96 Hz, 1 H), 4.25 (q, J = 7.12 Hz, 2 H), 3.85–3.82 (m, 4 H), 3.12–3.10 (m, 4 H), 1.33 (t, J = 7.13 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 166.5 (s, 1 C), 146.6 (s, 1 C), 142.0 (s, 1 C), 141.6 (s, 1 C), 132.6 (s, 1 C), 127.7 (s, 1 C), 126.0 (s, 1 C), 120.5 (s, 1 C), 118.5 (s, 1 C), 66.5 (s, 2 C), 60.6 (s, 1 C), 51.4 (s, 2 C), 14.3 (s, 1 C) ppm. Ethyl (E)-3-[3-Nitro-4-(piperidin-1-yl)phenyl]acrylate (1b) Orange solid. HRMS: m/z calcd for C16H20N2O4 [M + H]: 305.1501; found: 305.1499. 1H NMR (400 MHz, CDCl3): δ = 7.91 (d, J = 2.10 Hz, 1 H), 7.59–7.55 (m, 2 H), 7.08 (d, J = 12.06 Hz, 1 H), 6.33 (d, J = 15.93 Hz, 1 H), 4.26 (q, J = 7.12 Hz, 2 H), 3.12–3.09 (m, 4 H), 1.73–1.63 (m, 6 H), 1.34 (t, J = 7.13 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 166.7 (s, 1 C), 147.5 (s, 1 C), 142.1 (s, 1 C), 140.8 (s, 1 C), 132.3 (s, 1 C), 126.4 (s, 1 C), 125.7 (s, 1 C), 120.5 (s, 1 C), 117.4 (s, 1 C), 60.5 (s, 1 C), 52.2 (s, 2 C), 25.7 (s, 2 C), 23.9 (s, 1 C), 14.3 (s, 1 C) ppm. Ethyl (E)-3-[3-Nitro-4-(pyrrolidin-1-yl)phenyl]acrylate (1c) Yellow solid. HRMS: m/z calcd for C15H18N2O4 [M + H]: 291.1345; found: 291.1347. 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 2.09 Hz, 1 H), 7.57 (d, J = 15.92 Hz, 1 H),7.53 (dd, J = 8.97, 2.13 Hz, 1 H), 6.90 (d, J = 8.98 Hz, 1 H), 6.28 (d, J = 15.90 Hz, 1 H), 4.26 (q, J = 7.13 Hz, 2 H), 3.27 (t, J = 6.45 Hz, 4 H), 2.02–2.00 (m, 4 H), 1.34 (t, J = 7.13 Hz, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 167.1 (s, 1 C), 143.4 (s, 1 C), 142.6 (s, 1 C), 136.7 (s, 1 C), 131.6 (s, 1 C), 127.1 (s, 1 C), 122.0 (s, 1 C), 116.3 (s, 1 C), 115.7 (s, 1 C), 60.4 (s, 1 C), 50.6 (s, 2 C), 25.6 (s, 2 C), 14.3 (s, 1 C) ppm.